Thầy cô trường THCS Bình Chánh xin giới thiệu đến các em bài học hôm nay với nội dung: Bài 2 trang 121 sgk đại số 11: Bài 1. Giới hạn của dãy số…
Bài 2 trang 121 sgk đại số 11: Bài 1. Giới hạn của dãy số. Chứng minh rằng lim …
Bài 2. Biết dãy số \((u_n)\) thỏa mãn \(|u_n-1| < \frac{1}{n^{3}}\) với mọi \(n\). Chứng minh rằng \(\lim u_n=1\).
Bạn đang xem: Bài 2 trang 121 sgk đại số 11: Bài 1. Giới hạn của dãy số…
Vì \(\lim \frac{1}{n^{3}}\) = 0 nên |\(\frac{1}{n^{3}}\)| có thể nhỏ hơn một số dương bé tùy ý, kể từ một số hạng nào đó trở đi.
Mặt khác, ta có \(|u_n-1| < \frac{1}{n^{3}}\) = |\(\frac{1}{n^{3}}\)| với mọi \(n\). Nếu \(|u_n-1|\) có thể nhỏ hơn một số dương bé tùy ý, kể từ một số hạng nào đó trở đi, nghĩa là \(\lim (u_n-1) = 0\). Do đó \(\lim u_n= 1\).
Hy vọng nội dung bài học Bài 2 trang 121 sgk đại số 11: Bài 1. Giới hạn của dãy số… sẽ là tài liệu hữu ích giúp các em hoàn thành tốt bài tập của mình.
Đăng bởi: Trường THCS Bình Chánh
Chuyên mục: Tài Liệu Học Tập