Thầy cô trường THCS Bình Chánh xin giới thiệu đến các em bài học hôm nay với nội dung: Bài 4 trang 122 đại số 11: Bài 1. Giới hạn của dãy số…
Bài 4 trang 122 sgk đại số 11: Bài 1. Giới hạn của dãy số. Để trang hoàng cho căn hộ của mình, chú chuột Mickey quyết định tô màu một miếng bìa hình vuông cạnh bằng 1.
(Quảng cáo)
Bài 4. Để trang hoàng cho căn hộ của mình, chú chuột Mickey quyết định tô màu một miếng bìa hình vuông cạnh bằng \(1\). Nó tô màu xám các hình vuông nhỏ được đánh dấu \(1, 2, 3, .. n, …\) trong đó cạnh của hình vuông kế tiếp bằng một nửa cạnh hình vuông trước đó (h.51)
Bạn đang xem: Bài 4 trang 122 đại số 11: Bài 1. Giới hạn của dãy số…
Giả sử quy trình tô màu của Mickey có thể tiến ra vô hạn.
a) Gọi \(u_n\) là diện tích của hình vuông màu xám thứ \(n\). Tính \(u_1, u_2, u_3\) và \(u_n\).
b) Tính \(\lim S_n\) với \(S_n= {u_{1}} + {u_{2}} + {u_{3}} + … + {u_{n}}\)
a) Hình vuông thứ nhất có cạnh bằng \(\frac{1}{2}\) nên
\(u_1 =(\frac{1}{2}\))2 = \(\frac{1}{4}\).
Hình vuông thứ hai có cạnh bằng \(\frac{1}{4}\) nên \({u_2} = {\left( {{1 \over 4}} \right)^2} = {1 \over {{4^2}}}\).
Hình vuông thứ ba có cạnh bằng \(\frac{1}{8}\) nên \({u_3} = {\left( {{1 \over 8}} \right)^2} = {1 \over {{4^3}}}\)
Tương tự, ta có \(u_n=\frac{1}{4^{n}}\)
b) Dãy số \((u_n)\) là một cặp số nhân lùi vô hạn với \(u_1=\frac{1}{4}\) và \(q = \frac{1}{4}\). Do đó
\(\lim S_n=\frac{u_{1}}{1-q}= \frac{\frac{1}{4}}{1-\frac{1}{4}}=\frac{1}{3}\).
Hy vọng nội dung bài học Bài 4 trang 122 đại số 11: Bài 1. Giới hạn của dãy số… sẽ là tài liệu hữu ích giúp các em hoàn thành tốt bài tập của mình.
Đăng bởi: Trường THCS Bình Chánh
Chuyên mục: Tài Liệu Học Tập