Học TậpLớp 7Toán 7 Chân trời sáng tạo

Giải Bài 4 trang 15 Toán 7 tập 1 SGK Chân trời sáng tạo

Mời các em theo dõi nội dung bài học do thầy cô trường THCS Bình Chánh biên soạn sẽ giúp các em nắm chắc kiến thức nội dung bài học tốt hơn.

Bài 4 trang 15 SGK Toán 7

Toán lớp 7 Bài 4 trang 15 là lời giải bài Các phép tính với số hữu tỉ SGK Toán 7 sách Chân trời sáng tạo hướng dẫn chi tiết lời giải giúp cho các em học sinh tham khảo, ôn tập, củng cố kỹ năng giải Toán 7. Mời các em học sinh cùng tham khảo chi tiết.

Giải bài 4 Toán 7 SGK trang 15

Bài 4 (SGK trang 15): Tính:

Bạn đang xem: Giải Bài 4 trang 15 Toán 7 tập 1 SGK Chân trời sáng tạo

a) \frac{3}{7}.\left( { - \frac{1}{9}} \right) + \frac{3}{7}.\left( { - \frac{2}{3}} \right)

b) \left( {\frac{{ - 7}}{{13}}} \right).\frac{5}{{12}} + \left( {\frac{{ - 7}}{{13}}} \right).\frac{7}{{12}} + \left( {\frac{{ - 6}}{{13}}} \right)

c) \left[ {\left( {\frac{{ - 2}}{3}} \right) + \frac{3}{7}} \right]:\frac{5}{9} + \left( {\frac{4}{7} - \frac{1}{3}} \right):\frac{5}{9}

d) \frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{5}{9}:\left( {\frac{1}{{15}} - \frac{2}{3}} \right)

e) \frac{3}{5} + \frac{3}{{11}} - \left( {\frac{{ - 3}}{7}} \right) + \left( {\frac{{ - 2}}{{97}}} \right) - \frac{1}{{35}} - \frac{3}{4} + \left( {\frac{{ - 23}}{{44}}} \right)

Hướng dẫn giải

Tính chất phân phối của phép nhân đối với phép cộng: a.(b + c) = a . b + a . c

Phép cộng các số hữu tỉ cũng có tính chất như phép cộng số nguyên: giao hoán, kết hợp và cộng với số 0.

Cho x, y là hai số hữu tỉ: x = \frac{a}{b};y = \frac{c}{d};\left( {b \ne 0,d \ne 0} \right), ta có: x.y = \frac{a}{b}.\frac{c}{d} = \frac{{a.c}}{{b.d}}

Cho x, y là hai số hữu tỉ: x = \frac{a}{b};y = \frac{c}{d};\left( {y \ne 0;b \ne 0} \right), ta có:

x:y = \frac{a}{b}:\frac{c}{d} = \frac{a}{b}.\frac{d}{c} = \frac{{a.d}}{{b.c}}

Lời giải chi tiết

Thực hiện các phép tính như sau:

a) \frac{3}{7}.\left( { - \frac{1}{9}} \right) + \frac{3}{7}.\left( { - \frac{2}{3}} \right)

\begin{matrix}
   = \dfrac{3}{7}.\left[ {\left( { - \dfrac{1}{9}} \right) + \left( { - \dfrac{2}{3}} \right)} \right] \hfill \\
   = \dfrac{3}{7}.\left[ {\left( { - \dfrac{1}{9}} \right) + \left( { - \dfrac{6}{9}} \right)} \right] \hfill \\
   = \dfrac{3}{7}.\dfrac{{ - 7}}{9} = \dfrac{{ - 1}}{3} \hfill \\ 
\end{matrix}

b) \left( {\frac{{ - 7}}{{13}}} \right).\frac{5}{{12}} + \left( {\frac{{ - 7}}{{13}}} \right).\frac{7}{{12}} + \left( {\frac{{ - 6}}{{13}}} \right)

\begin{matrix}
   = \left( {\dfrac{{ - 7}}{{13}}} \right).\left( {\dfrac{5}{{12}} + \dfrac{7}{{12}}} \right) + \left( {\dfrac{{ - 6}}{{13}}} \right) \hfill \\
   = \left( {\dfrac{{ - 7}}{{13}}} \right).\left( {\dfrac{{12}}{{12}}} \right) + \left( {\dfrac{{ - 6}}{{13}}} \right) \hfill \\
   = \left( {\dfrac{{ - 7}}{{13}}} \right).1 + \left( {\dfrac{{ - 6}}{{13}}} \right) = \left( {\dfrac{{ - 7}}{{13}}} \right) + \left( {\dfrac{{ - 6}}{{13}}} \right) = \dfrac{{ - 13}}{{13}} =  - 1 \hfill \\ 
\end{matrix}

c) \left[ {\left( {\frac{{ - 2}}{3}} \right) + \frac{3}{7}} \right]:\frac{5}{9} + \left( {\frac{4}{7} - \frac{1}{3}} \right):\frac{5}{9}

\begin{matrix}
   = \left[ {\left( {\dfrac{{ - 2}}{3}} \right) + \dfrac{3}{7}} \right].\dfrac{9}{5} + \left( {\dfrac{4}{7} - \dfrac{1}{3}} \right).\dfrac{9}{5} \hfill \\
   = \dfrac{{ - 5}}{{21}}.\dfrac{9}{5} + \dfrac{5}{{21}}.\dfrac{9}{5} = 0 \hfill \\ 
\end{matrix}

d) \frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{5}{9}:\left( {\frac{1}{{15}} - \frac{2}{3}} \right)

\begin{matrix}
   = \dfrac{5}{9}:\left( {\dfrac{{ - 3}}{{22}}} \right) + \dfrac{5}{9}:\left( {\dfrac{{ - 3}}{5}} \right) \hfill \\
   = \dfrac{5}{9}.\dfrac{{22}}{{ - 3}} + \dfrac{5}{9}.\dfrac{5}{{ - 3}} \hfill \\
   = \dfrac{5}{9}.\left[ {\dfrac{{22}}{{ - 3}} + \dfrac{5}{{ - 3}}} \right] \hfill \\
   = \dfrac{5}{9}.\dfrac{{ - 27}}{3} =  - 5 \hfill \\ 
\end{matrix}

e) \frac{3}{5} + \frac{3}{{11}} - \left( {\frac{{ - 3}}{7}} \right) + \left( {\frac{{ - 2}}{{97}}} \right) - \frac{1}{{35}} - \frac{3}{4} + \left( {\frac{{ - 23}}{{44}}} \right)

\begin{matrix}
   = \left[ {\dfrac{3}{5} - \left( {\dfrac{{ - 3}}{7}} \right) - \dfrac{1}{{35}}} \right] + \left[ { - \dfrac{3}{4} + \dfrac{3}{{11}} + \left( {\dfrac{{ - 23}}{{44}}} \right)} \right] + \left( {\dfrac{{ - 2}}{{97}}} \right) \hfill \\
   = \left[ {\dfrac{{21}}{{35}} - \left( {\dfrac{{ - 15}}{{35}}} \right) - \dfrac{1}{{35}}} \right] + \left[ { - \dfrac{{33}}{{44}} + \dfrac{{12}}{{44}} + \left( {\dfrac{{ - 23}}{{44}}} \right)} \right] + \left( {\dfrac{{ - 2}}{{97}}} \right) \hfill \\
   = 1 + \left( { - 1} \right) + \left( {\dfrac{{ - 2}}{{97}}} \right) =  - \dfrac{2}{{97}} \hfill \\ 
\end{matrix}

—-> Câu hỏi cùng bài:

  • Bài 3 (SGK trang 15): Thay ? bằng dâu (>, < , =) thích hợp: ...
  • Bài 5 (SGK trang 15): Tìm x, biết: …
  • Bài 6 (SGK trang 16): Hai đoạn ống nước có chiều dài lần lượt là 0,8m và 1,35m ….
  • Bài 7 (SGK trang 16): Một nhà máy trong tuần đã thực hiện được \frac{4}{{15}} kế hoạch tháng …
  • Bài 8 (SGK trang 16): Vào tháng 6, giá niêm yết một chiếc tivi 42 inch tại một siêu thị …

—-> Bài liên quan: Giải Toán 7 Bài 2 Các phép tính với số hữu tỉ

—–> Bài học tiếp theo: Bài 3 Lũy thừa của một số hữu tỉ

—————————————-

Trên đây là lời giải chi tiết Bài 4 Toán lớp 7 trang 15 Các phép tính với số hữu tỉ cho các em học sinh tham khảo, nắm được cách giải các dạng toán của Chương 1: Số hữu tỉ. Qua đó giúp các em học sinh ôn tập chuẩn bị cho các bài thi giữa và cuối học kì lớp 7. Chúc các em học tốt.

Ngoài ra Giaitoan mời thầy cô và học sinh tham khảo thêm một số tài liệu liên quan: Luyện tập Toán 7, Đề thi giữa học kì 1 Toán 7, Đề thi học kì 1 Toán 7, ….

Đăng bởi: THCS Bình Chánh

Chuyên mục: Toán 7 Chân trời sáng tạo

5/5 - (1 bình chọn)


Trường THCS Bình Chánh

Trường THCS Bình Chánh với mục tiêu chung là tạo ra một môi trường học tập tích cực, nơi mà học sinh có thể phát triển khả năng và đạt được thành công trong quá trình học tập. Chúng tôi cam kết xây dựng một không gian học tập đầy thách thức, sáng tạo và linh hoạt, nơi mà học sinh được khuyến khích khám phá, rèn luyện kỹ năng và trở thành những người học suốt đời.

Bài viết liên quan

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button