Học TậpLớp 7Toán 7 Kết nối tri thức

Giải Toán 7 Bài 22 Kết nối tri thức: Đại lượng tỉ lệ thuận

Mời các em theo dõi nội dung bài học do thầy cô trường Trung học Bình Chánh biên soạn sẽ giúp các em nắm chắc kiến thức nội dung bài học tốt hơn.

Giải bài tập Toán 7 Bài 22: Đại lượng tỉ lệ thuận 

A. Các câu hỏi trong bài

Bạn đang xem: Giải Toán 7 Bài 22 Kết nối tri thức: Đại lượng tỉ lệ thuận

Giải Toán 7 trang 11 Tập 2

Mở đầu trang 11 Toán 7 Tập 2:

Bột sắn dây được làm từ củ sắn dây, là một loại thực phẩm có nhiều tác dụng tốt với sức khỏe. Ông An nhận thấy cứ 4,5 kg củ sắn dây tươi thì thu được khoảng 1 kg bột. Hỏi với 3 tạ củ sắn dây tươi, ông An sẽ thu được khoảng bao nhiêu kilôgam bột sắn dây?

Giải Toán 7 Bài 22 (Kết nối tri thức): Đại lượng tỉ lệ thuận (ảnh 1) 

Lời giải:

Sau bài học này chúng ta sẽ giải quyết bài toán như sau:

Đổi 3 tạ = 300 kg.

Gọi x là số kg bột sắn dây thu được từ 300 kg củ sắn dây.

Vì số kg củ sắn dây và số kg bột sắn dây thu được là hai đại lượng tỉ lệ thuận với nhau nên 4,51=300x.

Suy ra, x=300.14,5=2003 (kg)

Vậy ta thu được 2003 kg bột sắn dây từ 3 tạ củ sắn dây tươi.

HĐ 1 trang 11 Toán 7 Tập 2: 

Một xe ô tô di chuyển với vận tốc không đổi 60 km/h. Gọi s (km) là quãng đường ô tô đi được trong khoảng thời gian t (h).

Thay mỗi dấu “?” trong bảng sau bằng số thích hợp.

Giải Toán 7 Bài 22 (Kết nối tri thức): Đại lượng tỉ lệ thuận (ảnh 1) 

Lời giải:

Ta có s = v.t, với vận tốc v không đổi, v = 60 km/h ta có:

s = 60.t

+) Với t = 1 thì s = 60.1 = 60 (km)

+) Với t = 1,5 thì s = 60.1,5 = 90 (km)

+) Với t = 2 thì s = 60.2 = 120 (km)

+) Với t = 3 thì s = 60.3 = 180 (km)

Ta có bảng sau:

t (h)

1

1,5

2

3

s (km)

60

90

120

180

 

HĐ 2 trang 11 Toán 7 Tập 2:

Một xe ô tô di chuyển với vận tốc không đổi 60 km/h. Gọi s (km) là quãng đường ô tô đi được trong khoảng thời gian t (h).

Viết công thức tính quãng đường s theo thời gian di chuyển tương ứng t.

Lời giải:

Ta có s = v.t, với vận tốc v không đổi, v = 60km/h ta có:

s = 60.t

Vậy s = 60t.

Câu hỏi trang 11 Toán 7 Tập 2: 

Trong HĐ2, quãng đường s có tỉ lệ thuận với thời gian t không? Thời gian t có tỉ lệ thuận với quãng đường s không?

Lời giải:

Ta thấy đại lượng s liên hệ với đại lượng t theo công thức s = 60t (60 là hằng số) nên quãng đường s tỉ lệ thuận với thời gian t.

Ngược lại ta có: t = s60=160s.

Ta thấy đại lượng t liên hệ với đại lượng s theo công thức t = 160s (160 là hằng số) nên thời gian t tỉ lệ thuận với quãng đường s.

Giải Toán 7 trang 12 Tập 2

Luyện tập 1 trang 12 Toán 7 Tập 2:

Theo viện Dinh dưỡng Quốc gia, cứ trong 100 g đậu tương (đậu nành) thì có 34 g protein.

Khối lượng protein trong đậu tương có tỉ lệ thuận với khối lượng đậu tương không?

Nếu có thì hệ số tỉ lệ là bao nhiêu?

Lời giải:

Vì khối lượng đậu tương tăng lên thì khối lượng protein trong đậu tương cũng tăng lên. Do đó, khối lượng protein tỉ lệ thuận với khối lượng đậu tương.

Gọi khối lượng đậu tương là x (g); khối lượng protein tương ứng là y (g).

Ta có: y = kx

Với x = 100 gam; y = 34 nên 34 = 100.k hay k = 34 : 100 = 0,34

Do đó, y = 0,34x

Vậy khối lượng protein tỉ lệ thuận với khối lượng đậu tương. Hệ số tỉ lệ là 0,34.

Vận dụng trang 12 Toán 7 Tập 2:

Em hãy giải bài toán mở đầu.

Lời giải:

Sau bài học này chúng ta sẽ giải quyết bài toán như sau:

Đổi 3 tạ = 300 kg.

Gọi x là số kg bột sắn dây thu được từ 300 kg củ sắn dây.

Vì số kg củ sắn dây và số kg bột sắn dây thu được là hai đại lượng tỉ lệ thuận với nhau nên 4,51=300x.

Suy ra, x=300.14,5=2003 (kg)

Vậy ta thu được 2003 kg bột sắn dây từ 3 tạ củ sắn dây tươi.

Giải Toán 7 trang 13 Tập 2

Luyện tập 2 trang 13 Toán 7 Tập 2:

Hai thanh kim loại đồng chất có thể tích tương ứng là 10 cm3 và 15 cm3. Hỏi mỗi thanh nặng bao nhiêu gam, biết rằng một thanh nặng hơn thanh kia 40 g?

Lời giải:

Vì hai thanh kim loại đồng chất với nhau nên khối lượng và thể tích của hai thanh kim loại tỉ lệ thuận với nhau.

Gọi khối lượng của thanh kim loại 1 là x1 (g); khối lượng thanh kim loại 2 là x2 (g);

Gọi thể tích của thanh kim loại 1 là y1 (g); thể tích của thanh kim loại 2 là y2 (g).

Áp dụng tính chất tỉ lệ thuận ta được:

y1y2=x1x2.

Với y1 = 10; y2 = 15 ta có:

x1x2=1015 hay  x110=x215.

Từ tỉ lệ thức ta thấy x1 < x2. Do đó, x2 – x1 = 40.

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

x110=x215=x2x11510=405=8

Khi đó, x110=8 nên x1 = 8 . 10 = 80;

             x215=8 nên x2 = 8 . 15 = 120

Vậy khối lượng hai thanh kim loại có thể tích 10 cm3 và 15 cm3 lần lượt là 80 g và 120 g.

Giải Toán 7 trang 14 Tập 2

Luyện tập 3 trang 14 Toán 7 Tập 2: 

Hãy chia 1 tấn gạo thành ba phần có khối lượng tỉ lệ thuận với 2; 3; 5.

Lời giải:

Đổi 1 tấn = 1 000 kg.

Gọi số kg gạo mỗi phần được chia ra là x; y; z (x > 0, y > 0, z > 0).

Vì x; y; z tỉ lệ thuận với 2; 3; 5 nên ta có dãy tỉ số bằng nhau:

x2=y3=z5.

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

x2=y3=z5=x+y+z2+3+5=100010=100

Suy ra:

x = 100.2 = 200;

y = 100.3 = 300;

z = 100.5 = 500.

Vậy khối lượng ba phần gạo được chia ra lần lượt là 200 kg; 300 kg; 500 kg.

B. Bài tập

Bài 6.17 trang 14 Toán 7 Tập 2: 

Cho biết x và y là hai đại lượng tỉ lệ thuận. Thay mỗi dấu “?” trong bảng sau bằng số thích hợp.

Giải Toán 7 Bài 22 (Kết nối tri thức): Đại lượng tỉ lệ thuận (ảnh 1) 

Lời giải:

Vì x và y là hai đại lượng tỉ lệ thuận với nhau nên y = kx (k ≠ 0).

Thay x = 2; y = –6 ta được: –6 = k . 2 nên k = (–6) : 2 = –3.

Do đó, y = –3x.

+) Với x = 4 thì y = (–3).4 = –12;

+) Với x = 5 thì y = (–3).5 = –15;

+) Với y = 9 thì x = 9 : (–3) = –3;

+) Với y = 18 thì x = 18 : (–3) = –6;

+) Với y = 1,5 thì x = 1,5 : (–3) = –0,5.

Ta có bảng sau:

x

2

4

5

3

6

0,5

y

-6

12

15

9

18

1,5

 

Bài 6.18 trang 14 Toán 7 Tập 2: 

Theo bảng giá trị dưới đây, hai đại lượng x và y có phải là hai đại lượng tỉ lệ thuận không?

Giải Toán 7 Bài 22 (Kết nối tri thức): Đại lượng tỉ lệ thuận (ảnh 1) 

Lời giải:

a) Giả sử hai đại lượng x và y tỉ lệ với nhau. Khi đó, y = kx (k ≠ 0).

+) Với x = 5; y = 15 thì k = yx=155=3

+) Với x = 9; y = 27 thì k = yx=279=3

+) Với x = 15; y = 45 thì k = yx=4515=3

+) Với x = 72; y = 24 thì k = yx=7224=3

Vậy ở bảng a, hai đại lượng x và y là hai đại lượng tỉ lệ thuận.

b) Giả sử hai đại lượng x và y tỉ lệ với nhau. Khi đó, y = kx (k ≠ 0).

+) Với x = 4; y = 8 thì k = yx=84=2

+) Với x = 8; y = 16 thì k = yx=168=2

+) Với x = 16; y = 30 thì k = yx=3016=158

+) Với x = 25; y = 50 thì k = yx=5025=2

Vậy ở bảng b, hai đại lượng x và y không là hai đại lượng tỉ lệ thuận (các giá trị k tính ra khác nhau).

Bài 6.19 trang 14 Toán 7 Tập 2:

Cho biết y tỉ lệ thuận với x theo hẹ số tỉ lệ a, x tỉ lệ thuận với z theo hệ số tỉ lệ b. Hỏi y có tỉ lệ thuận với z không? Nếu có thì hệ số tỉ lệ là bao nhiêu?

Lời giải:

Vì đại lượng y tỉ lệ thuận với đại lượng x theo hệ số a nên ta có: y = ax.

Vì đại lượng x tỉ lệ thuận với đại lượng z theo hệ số b nên x = bz.

Ta có: y = ax = a.(bz) = a.b.z = ab.z

Vậy đại lượng y tỉ lệ thuận với đại lượng z và hệ số tỉ lệ là ab.

Bài 6.20 trang 14 Toán 7 Tập 2: 

Hai bể nước hình hộp chữ nhật có chiều dài và chiều rộng tương ứng bằng nhau, nhưng chiều cao của bể thứ nhất bằng 34 chiều cao của bể thứ hai. Để bơm đầy nước vào bể thứ nhất mất 4,5 giờ. Hỏi phải mất bao nhiêu thời gian để bơm đầy nước vào bể thứ hai (nếu dùng máy bơm có cùng công suất)?

Lời giải:

Vì chiều dài và chiều rộng của hai bể bằng nhau nhưng chiều cao của bể thứ nhất bằng 34 chiều cao bể thứ hai. Nên thể tích bể thứ nhất bằng 34 thể tích bể thứ hai.

Gọi thời gian để bơm đầy nước vào bể thứ hai là x (giờ).

Vì thời gian bơm đầy nước và thể tích bể nước là hai đại lượng tỉ lệ thuận với nhau nên:

4,5x=34, do đó, x=4,5.43=6

Vậy để bơm đầy bể nước thứ hai thì người ta cần tới 6 giờ.

Bài 6.21 trang 14 Toán 7 Tập 2: 

Để chuẩn bị cho học sinh làm thí nghiệm, cô Hương chia 1,5 lít hóa chất thành ba phần tỉ lệ thuận với 4; 5; 6 và đựng trong ba chiếc lọ. Hỏi mỗi chiếc lọ đừng bao nhiêu lít hóa chất đó?

Lời giải:

Gọi số lít hóa chất trong ba lọ lần lượt là x; y; z (x > 0, y > 0, z > 0).Vì tổng số lít hóa chất là 1,5 lít nên x + y + z = 1,5.

Vì số lít hóa chất trong ba lọ tỉ lệ thuận với 4; 5; 6 nên ta có dãy tỉ số bằng nhau:

x4=y5=z6

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

x4=y5=z6=x+y+z4+5+6=1,515=0,1

Suy ra:

x4=0,1 nên x = 0,1.4 = 0,4;

y5=0,1 nên y = 0,1.5 = 0,5;

z6=0,1 nên z = 0,1.6 = 0,6.

Vậy số lít hóa chất trong ba lọ lần lượt là 0,4 lít; 0,5 lít; 0,6 lít.

Xem thêm các bài giải sách giáo khoa Toán 7 bộ sách Kết nối tri thức hay, chi tiết khác:

Bài 23: Đại lượng tỉ lệ nghịch

Luyện tập chung trang 20

Bài tập cuối chương 6

Bài 24: Biểu thức đại số

Bài 25: Đa thức một biến

Đăng bởi: THCS Bình Chánh

Chuyên mục: Giải Toán 7 Kết nối tri thức

Rate this post


Trường THCS Bình Chánh

Trường THCS Bình Chánh với mục tiêu chung là tạo ra một môi trường học tập tích cực, nơi mà học sinh có thể phát triển khả năng và đạt được thành công trong quá trình học tập. Chúng tôi cam kết xây dựng một không gian học tập đầy thách thức, sáng tạo và linh hoạt, nơi mà học sinh được khuyến khích khám phá, rèn luyện kỹ năng và trở thành những người học suốt đời.

Bài viết liên quan

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button