Học TậpLớp 10Toán 10 Cánh Diều

Bài 1 trang 45 Toán 10 Tập 2 | Cánh diều Giải Toán lớp 10

Mời các em theo dõi nội dung bài học do thầy cô trường Trung học Bình Chánh biên soạn sẽ giúp các em nắm chắc kiến thức nội dung bài học tốt hơn.

Giải bài tập Toán 10 Bài 4: Xác suất của biến cố trong một số trò chơi đơn giản 

A. Các câu hỏi trong bài

Bạn đang xem: Bài 1 trang 45 Toán 10 Tập 2 | Cánh diều Giải Toán lớp 10

Giải Toán 10 trang 42 Tập 2

Câu hỏi khởi động trang 42 Toán 10 Tập 2: Quan sát đồng xu ở Hình 5 ta quy ước: mặt xuất hiện số 5 000 là mặt sấp hay mặt S; mặt xuất hiện Quốc huy Việt Nam là mặt ngửa hay mặt N. Tung một đồng xu cân đối và đồng chất hai lần liên tiếp. Xét biến cố “Có ít nhất một lần xuất hiện mặt ngửa”.

Giải Toán 10 Bài 4 (Cánh diều): Xác suất của biến cố trong một số trò chơi đơn giản (ảnh 1) 

Làm thế nào để tính được xác suất của biến cố nói trên?

Lời giải

Sau bài học này, ta sẽ giải quyết được bài toán trên như sau:

Tung một đồng xu hai lần liên tiếp, không gian mẫu trong trò chơi này là tập hợp

Ω = {SS; SN; NS; NN}.

Do đó, n(Ω) = 4.

Gọi biến cố A: “Có ít nhất một lần xuất hiện mặt ngửa”.

Các kết quả thuận lợi cho biến cố A là: SN, NS, NN, tức là A = {SN; NS; NN} nên n(A) = 3.

Vậy xác suất của biến cố A là: PA=nAnΩ=34.

Hoạt động 1 trang 42 Toán 10 Tập 2: Viết tập hợp Ω các kết quả có thể xảy ra đối với mặt xuất hiện của đồng xu sau hai lần tung.

Lời giải

Tung đồng xu một lần, các kết quả xảy ra có thể là xuất hiện mặt sấp (mặt S) hoặc mặt ngửa (mặt N).

Các kết quả có thể xảy ra đối với mặt xuất hiện của đồng xu sau hai lần tung là: SS, SN, NS, NN.

Vậy Ω = {SS; SN; NS; NN}.

Hoạt động 2 trang 42 Toán 10 Tập 2: Xét sự kiện “Kết quả của hai lần tung đồng xu là giống nhau”. Sự kiện đã nêu bao gồm những kết quả nào trong tập hợp Ω? Viết tập hợp A các kết quả đó.

Lời giải

Kết quả của hai lần tung giống nhau, tức là cả hai lần tung đều ra mặt sấp hoặc cả hai lần tung đều ra mặt ngửa.

Sự kiện đã nêu bao gồm các kết quả SS, NN trong tập hợp Ω.

Vậy tập hợp A các kết quả có thể xảy ra đối với sự kiện trên là: A = {SS; NN}.

Giải Toán 10 trang 43 Tập 2

Hoạt động 3 trang 43 Toán 10 Tập 2: Viết tỉ số giữa số phần tử của tập hợp A và số phần tử của của tập hợp Ω.

Lời giải

Theo hoạt động 1 ta có: Ω = {SS; SN; NS; NN} nên số phần tử của tập hợp Ω là 4.

Và theo hoạt động 2 ta có: A = {SS; NN} nên số phần tử của tập hợp A là 2.

Vậy tỉ số giữa số phần tử của tập hợp A và số phần tử của của tập hợp Ω là 24=12.

Luyện tập 1 trang 43 Toán 10 Tập 2: Tung một đồng xu hai lần liên tiếp. Xét biến cố “Có ít nhất một lần xuất hiện mặt sấp”. Tính xác suất của biến cố nói trên.

Lời giải

Không gian mẫu trong trò chơi trên là tập hợp  Ω = {SS; SN; NS; NN}, vậy n(Ω) = 4.

Gọi biến cố A: “Có ít nhất một lần xuất hiện mặt sấp”.

Các kết quả thuận lợi cho biến cố A là: SS, SN, NS, tức là A = {SS; SN; NS}, do đó n(A) = 3.

Vậy xác suất của biến cố A là: PA=nAnΩ=34.

Hoạt động 4 trang 43 Toán 10 Tập 2: Viết tập hợp Ω các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc sau hai lần gieo.

Lời giải
Gieo con xúc xắc một lần, có 6 kết quả có thể xảy ra là xuất hiện mặt 1 chấm, 2 chấm, 3 chấm, 4 chấm, 5 chấm hoặc 6 chấm.

Khi gieo một con xúc xắc hai lần liên tiếp, có 36 kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc sau hai lần gieo, đó là:

(1 ; 1) (1 ; 2) (1 ; 3) (1 ; 4) (1 ; 5) (1 ; 6)

(2 ; 1) (2 ; 2) (2 ; 3) (2 ; 4) (2 ; 5) (2 ; 6)

(3 ; 1) (3 ; 2) (3 ; 3) (3 ; 4) (3 ; 5) (3 ; 6)

(4 ; 1) (4 ; 2) (4 ; 3) (4 ; 4) (4 ; 5) (4 ; 6)

(5 ; 1) (5 ; 2) (5 ; 3) (5 ; 4) (5 ; 5) (5 ; 6)

(6 ; 1) (6 ; 2) (6 ; 3) (6 ; 4) (6 ; 5) (6 ; 6)

Tập hợp Ω các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc sau hai lần gieo là Ω = {(i ; j) | i, j = 1, 2, 3, 4, 5, 6}, trong đó (i ; j) là kết quả “Lần thứ nhất xuất hiện mặt i chấm, lần thứ hai xuất hiện mặt j chấm”.

Giải Toán 10 trang 44 Tập 2

Hoạt động 5 trang 44 Toán 10 Tập 2: Xét sự kiện “Tổng số chấm trong hai lần gieo xúc xắc bằng 8”. Sự kiện đã nêu bao gồm những kết quả nào trong tập hợp Ω? Viết tập hợp C các kết quả đó.

Lời giải

Sự kiện “Tổng số chấm trong hai lần gieo xúc xắc bằng 8” gồm các kết quả: (2 ; 6), (3 ; 5), (4 ; 4), (5 ; 3), (6 ; 2) trong tập hợp Ω.

Tập hợp C các kết quả có thể xảy ra đối với sự kiện trên là:

C = {(2 ; 6); (3 ; 5); (4 ; 4); (5 ; 3); (6 ; 2)}.

Hoạt động 6 trang 44 Toán 10 Tập 2: Viết tỉ số giữa số phần tử của tập hợp C và số phần tử của tập hợp Ω.

Lời giải

Theo hoạt động 4 ta có, khi gieo một con xúc xắc hai lần liên tiếp, có 36 kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc sau hai lần gieo, do đó số phần tử của tập hợp Ω là 36.

Theo hoạt động 5 ta có: C = {(2 ; 6); (3 ; 5); (4 ; 4); (5 ; 3); (6 ; 2)} nên số phần tử của tập hợp C là 5.

Vậy tỉ số giữa số phần tử của tập hợp C và số phần tử của tập hợp Ω là 536.

Giải Toán 10 trang 45 Tập 2

Luyện tập 2 trang 45 Toán 10 Tập 2: Gieo một xúc xắc hai lần liên tiếp. Xét biến cố “Số chấm trong hai lần gieo đều là số nguyên tố”. Tính xác suất của biến cố đó.

Lời giải

Không gian mẫu trong trò chơi trên là tập hợp

Ω = {(i; j) | i, j = 1, 2, 3, 4, 5, 6},

trong đó (i; j) là kết quả “Lần thứ nhất xuất hiện mặt i chấm, lần thứ hai xuất hiện mặt j chấm”.

Vậy n(Ω) = 36.

Gọi biến cố A: “Số chấm trong hai lần gieo đều là số nguyên tố”.

Trong các số từ 1 đến 6, các số nguyên tố là: 2, 3, 5.

Do đó, các kết quả thuận lợi cho biến cố A là:

(2 ; 2), (2 ; 3), (2 ; 5), (3 ; 2), (3 ; 3), (3 ; 5), (5 ; 2), (5 ; 3), (5 ; 5).

Khi đó ta có tập hợp

A = {(2 ; 2); (2 ; 3); (2 ; 5); (3 ; 2); (3 ; 3); (3 ; 5); (5 ; 2); (5 ; 3); (5 ; 5)}.

Do đó, n(A) = 9.

Vậy xác suất của biến cố A là: P(A) = nAnΩ=936=14.

B. Bài tập

Bài 1 trang 45 Toán 10 Tập 2: Tung một đồng xu hai lần liên tiếp. Tính xác suất của biến cố “Kết quả của hai lần tung là khác nhau”.

Lời giải

Tung một đồng xu hai lần liên tiếp, các kết quả có thể xảy ra là: SS, SN, NS, NN.

Không gian mẫu của trò chơi trên là tập hợp Ω ={SS; SN; NS; NN} nên n(Ω) = 4.

Gọi biến cố A: “Kết quả của hai lần tung là khác nhau”.

Các kết quả thuận lợi cho biến cố A là: SN, NS, hay A = {SN; NS} nên n(A) = 2.

Vậy xác suất của biến cố A là: PA=nAnΩ=24=12.

Bài 2 trang 45 Toán 10 Tập 2: Tung một đồng xu ba lần liên tiếp.

a) Viết tập hợp Ω là không gian mẫu trong trò chơi trên. 

b) Xác định mỗi biến cố:

A: “Lần đầu xuất hiện mặt ngửa”;

B: “Mặt ngửa xảy ra đúng một lần”.

Lời giải

a) Tung một đồng xu ba lần liên tiếp. Các kết quả có thể xảy ra là: SSS, SSN, SNS, SNN, NSS, NNS, NSN, NNN.

Khi đó ta có không gian mẫu trong trò chơi trên là tập hợp

Ω = {SSS; SSN; SNS; SNN; NSS; NNS; NSN; NNN}

Vậy n(Ω) = 8.

b)

+) Biến cố A: “Lần đầu xuất hiện mặt ngửa”.

Các kết quả thuận lợi cho biến cố A là: NSS, NNS, NSN, NNN.

Vậy A = {NSS; NNS; NSN; NNN}.

+) Biến cố B: “Mặt ngửa xảy ra đúng một lần”.

Các kết quả thuận lợi cho biến cố B là: SSN, SNS, NSS.

Vậy B = {SSN; SNS; NSS}.

Bài 3 trang 45 Toán 10 Tập 2: Gieo một xúc xắc hai lần liên tiếp. Phát biểu mỗi biến cố sau dưới dạng mệnh đề nêu sự kiện:

A = {(6 ; 1); (6 ; 2); (6 ; 3); (6 ; 4); (6 ; 5); (6 ; 6)};

B = {(1 ; 6); (2 ; 5); (3 ; 4); (4 ; 3); (5 ; 2); (6 ; 1)};

C = {(1 ; 1); (2 ; 2); (3 ; 3); (4 ; 4); (5 ; 5); (6; 6)}.

Lời giải

– Ở biến cố A, các kết quả đều có lần đầu xuất hiện mặt 6 chấm, lần hai xuất hiện các mặt lần lượt từ 1 chấm đến 6 chấm.

Vậy ta phát biểu biến cố A: “Lần đầu xuất hiện mặt 6 chấm khi gieo xúc xắc”.

– Ở biến cố B, ta có: 1 + 6 = 2 + 5 = 3 + 4 = 4 + 3 = 5 + 2 = 6 + 1 = 7, tổng số chấm trong hai lần gieo là 7.

Vậy ta phát biểu biến cố B: “Tổng số chấm trong hai lần gieo bằng 7”.

– Ở biến cố C, ta thấy các kết quả ở hai lần gieo là giống nhau.

Vậy ta phát biểu biến cố C: “Kết quả của hai lần gieo là giống nhau”.

Bài 4 trang 45 Toán 10 Tập 2: Gieo một xúc xắc hai lần liên tiếp. Tính xác suất của mỗi biến cố sau: 

a) “Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10”;

b) “Mặt 1 chấm xuất hiện ít nhất một lần”.

Lời giải

Không gian mẫu trong trò chơi trên là tập hợp

Ω = {(i ; j) | i, j = 1, 2, 3, 4, 5, 6},

trong đó (i ; j) là kết quả “Lần thứ nhất xuất hiện mặt i chấm, lần thứ hai xuất hiện mặt j chấm”.

Vậy n(Ω) = 36.

a) Gọi biến cố M: “Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10”.

Các kết quả thuận lợi cho biến cố M là: (4 ; 6), (5 ; 5), (5 ; 6), (6 ; 4), (6 ; 5), (6 ; 6).

Hay M = {(4 ; 6); (5 ; 5); (5 ; 6); (6 ; 4); (6 ; 5); (6 ; 6)}.

Vì thế n(M) = 6.

Vậy xác suất của biến cố M là: PM=nMnΩ=636=16.

b) Gọi biến cố N: “Mặt 1 chấm xuất hiện ít nhất một lần”.

Các kết quả thuận lợi cho biến cố N là: (1 ; 1), (1 ; 2), (1 ; 3), (1 ; 4), (1 ; 5), (1 ; 6), (2 ; 1), (3 ; 1), (4 ; 1), (5 ; 1), (6 ; 1).

Hay N = {(1 ; 1); (1 ; 2); (1 ; 3); (1 ; 4); (1 ; 5); (1 ; 6); (2 ; 1); (3 ; 1); (4 ; 1); (5 ; 1); (6 ; 1)}. Vì thế n(N) = 11.  

Vậy xác suất của biến cố N là: PN=nNnΩ=1136.

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: 

Bài 5: Xác suất của biến cố

Bài tập cuối chương 6

Bài 1: Tọa độ của vectơ

Bài 2: Biểu thức tọa độ của các phép toán vectơ

Bài 3: Phương trình đường thẳng

Đăng bởi: THCS Bình Chánh

Chuyên mục: Toán 10 Cánh Diều

5/5 - (1 bình chọn)


Trường THCS Bình Chánh

Trường THCS Bình Chánh với mục tiêu chung là tạo ra một môi trường học tập tích cực, nơi mà học sinh có thể phát triển khả năng và đạt được thành công trong quá trình học tập. Chúng tôi cam kết xây dựng một không gian học tập đầy thách thức, sáng tạo và linh hoạt, nơi mà học sinh được khuyến khích khám phá, rèn luyện kỹ năng và trở thành những người học suốt đời.

Bài viết liên quan

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button