Toán 10 Kết nối tri thức Bài tập cuối chương 3 | Giải Toán lớp 10
Mời các em theo dõi nội dung bài học do thầy cô trường Trung học Bình Chánh biên soạn sẽ giúp các em nắm chắc kiến thức nội dung bài học tốt hơn.
Giải bài tập Toán 10 Bài tập cuối chương 3
A. Trắc nghiệm
Bạn đang xem: Toán 10 Kết nối tri thức Bài tập cuối chương 3 | Giải Toán lớp 10
Giải Toán 10 trang 44 Tập 1
Bài 3.12 trang 44 Toán 10 Tập 1: Cho tam giác ABC có . Khẳng định nào sau đây là đúng?
a)
A.
B.
C.
D.
b)
A.
B.
C.
D.
c)
A. .
B.
C.
D. b2 = c2 + a2 – 2ca.cos135o.
Lời giải:
Tam giác ABC có BC = a; AC = b; AB = c; .
a) Diện tích tam giác ABC:
.
Chọn D.
b) Theo định lí sin, ta có:
A. sai vì
B.
Mà .
Do đó B đúng.
C. (loại vì không có dữ kiện về góc C nên không thể tính R theo c).
D. (loại vì không có dữ kiện về góc A nên không thể tính R theo a).
Chọn B.
c)
A. .
Vì theo định lí côsin, ta có: a2 = b2 + c2 − 2bc . cosA
Không đủ dữ kiện để suy ra: .
Do đó A sai.
B. .
Theo định lí sin, ta có:
Nên .
Do đó B sai.
C. .
Vì theo câu a, .
Do đó C sai.
D. b2 = c2 + a2 – 2ca . cos135o. đúng.
Theo định lý côsin ta có:
b2 = c2 + a2 − 2ca . cosB (*)
Mà cosB = cos 135o.
Thay vào (*) ta được: b2 = c2 + a2 − 2ca . cos 135o.
Do đó D đúng.
Chọn D.
Bài 3.13 trang 44 Toán 10 Tập 1: Cho tam giác ABC. Khẳng định nào sau đây là đúng?
a)
A.
B.
C. a2 = b2 + c2 + 2bc . cos A.
D. S = r(a + b + c).
b)
A. sin A = sin(B + C).
B. cos A = cos(B + C).
C. cos A > 0.
D. sin A ≤ 0.
Lời giải:
a)
A.
Ta có . Mà r < R nên .
Do đó A sai.
B.
Ta có: S = pr .
Mà
.
Do đó B đúng.
C. a2 = b2 + c2 + 2bc . cos A.
Sai vì theo định lí côsin ta có: a2 = b2 + c2 − 2bc . cos A.
D. S = r(a + b + c).
Sai vì .
Chọn B.
b)
A. sinA = sin(B + C).
Ta có
sin(B + C) = sin(180° – ) = sin A.
Do đó, đáp án A đúng.
B. cos A = cos(B + C).
Sai vì cos (B + C) = cos(180° – ) = – cosA (do ).
C. cos A > 0.
∙ Nếu 0o < < 90o thì cos A > 0.
∙ Nếu 90o < < 180o thì cos A < 0.
Do đó C không đủ dữ kiện để kết luận.
D. sin A ≤ 0.
Ta có:
Mà b, c > 0 nên sin A > 0.
Do đó D sai.
Chọn D.
B. Tự luận
Bài 3.14 trang 44 Toán 10 Tập 1: Tính giá trị các biểu thức sau:
a) M = sin45o. cos45o + sin30o;
b) ;
c) P = 1 + tan2 60o;
d)
Lời giải:
a) M = sin45o. cos45o + sin30o
Ta có: sin 45o = cos 45o = ; sin 30o = .
Thay vào M, ta được:
M .
b)
Ta có: ; ; .
Thay vào N, ta được:
N = .
c) P = 1 + tan260o
Ta có: .
Thay vào P, ta được: P.
d)
Ta có: ;
Thay vào Q, ta được:
Q
Bài 3.15 trang 44 Toán 10 Tập 1: Cho tam giác ABC có AC = 10. Tính a, R, S, r.
Lời giải:
Theo định lí sin:
Ta có:
+ .
Mà b = AC = 10, .
Nên
.
+ a = 2R. sin A.
Mà , = 180o – 60o – 45o = 75o.
Nên a = 2.. sin 75o ≈ 11,15.
Diện tích tam giác ABC là:
(đvdt)
Khi đó:
+ .
+ .
+ .
Vậy a ≈ 11,15; , c ≈ 8,16, r ≈ 2,69.
Bài 3.16 trang 44 Toán 10 Tập 1: Cho tam giác ABC có trung tuyến AM. Chứng minh rằng:
a)
b) MA2 + MB2 – AB2 = 2MA.MB.cos và MA2 + MC2 – AC2 = 2MA.MC.cos;
c) (công thức đường trung tuyến).
Lời giải:
a) Ta có:
Vậy (đpcm)
b) Áp dụng định lí côsin trong ΔAMB, ta có:
AB2 = MA2 + MB2 – 2MA.MB.cos
MA2 + MB2 – AB2 = 2MA.MB.cos (1)
Áp dụng định lí côsin trong ΔAMC, ta có:
AC2 = MA2 + MC2 – 2MA.MC.cos
MA2 + MC2 – AC2 = 2MA.MC.cos (2)
Từ (1) và (2) suy ra điều phải chứng minh.
c) Từ (1) suy ra: MA2 = AB2 – MB2+ 2MA.MB.cos
Từ (2) suy ra: MA2= AC2 – MC2 + 2MA.MC.cos
Cộng vế với vế, ta được:
2MA2 = (AB2 – MB2+ 2MA.MB.cos) + (AC2 – MC2 + 2MA.MC.cos)
2MA2 = AB2 + AC2 – MB2 – MC2 + 2MA.MB.cos + 2MA.MC.cos
Mà (do AM là trung tuyến) nên:
2MA2 = AB2 + AC2 – – + 2MA.MB.cos + 2MA.MB.cos
2MA2 = AB2 + AC2 – + 2MA.MB.(cos + cos)
2MA2 = AB2 + AC2 –
(công thức đường trung tuyến).
Bài 3.17 trang 44 Toán 10 Tập 1: Cho tam giác ABC. Chứng minh rằng:
a) Nếu góc A nhọn thì b2 + c2 > a2;
b) Nếu góc A tù thì b2 + c2 < a2;
c) Nếu góc A vuông thì b2 + c2 = a2.
Lời giải:
Theo định lí côsin, ta có: a2 = b2 + c2 – 2bc.cosA
b2 + c2 – a2 = 2bc.cosA.
a) Nếu góc A nhọn thì cosA > 0 2bccosA > 0
Do đó: b2 + c2 – a2 = 2bc.cosA > 0.
Vậy b2 + c2 > a2 (đpcm).
b) Nếu góc A tù thì cosA < 0 2bccosA < 0
Do đó: b2 + c2 – a2 = 2bc.cosA < 0.
Vậy b2 + c2 < a2(đpcm).
c) Nếu góc A vuông thì cosA = 0 2bccosA = 0
Do đó: b2 + c2 – a2 = 2bc.cosA = 0.
Vậy b2 + c2 = a2 (đpcm).
Giải Toán 10 trang 45 Tập 1
Bài 3.18 trang 45 Toán 10 Tập 1: Trên biển, tàu B ở vị trí cách tàu A 53 km về hướng N34oE. Sau đó, tàu B chuyển động thẳng đều với vận tốc có độ lớn 30 km/h về hướng đông và tàu A chuyển động thẳng đều với vận tốc có độ lớn 50 km/h để gặp tàu B.
a) Hỏi tàu A cần phải chuyển động theo hướng nào?
b) Với hướng chuyển động đó thì sau bao lâu tàu A gặp tàu B?
Lời giải:
a) Gọi t (giờ) là thời gian đi cho đến khi hai tàu gặp nhau tại C.
Tàu B đi với vận tốc có độ lớn 30 km/h nên quãng đường BC = 30t.
Tàu A đi với vận tốc có độ lớn 50 km/h nên quãng đường AC = 50t.
Theo định lí sin, ta có: .
Trong đó: a = BC = 30t, b = AC = 50t, , .
Khi đó,
α ≈ 30o hoặc α ≈ 150o (loại).
Do đó AC hợp với hướng bắc một góc 34o + 30o = 64o.
Vậy tàu A chuyển động theo hướng N64oE.
b) Xét tam giác ABC, ta có: .
.
Theo định lí sin, ta có:
Mà a = BC = 30t, c = AB = 53, .
Khi đó,
30t ≈ 60
t ≈ 2 (h)
Vậy sau 2 giờ thì tàu A gặp tàu B.
Bài 3.19 trang 45 Toán 10 Tập 1: Trên sân bóng chày dành cho nam, các vị trí gôn Nhà (Home plate), gôn 1 (First base), gôn 2(Second base), gôn 3 (Third base) là bốn đỉnh của một hình vuông có cạnh dài 27,4m. Vị trí đứng ném bóng (Pitcher’s mound) nằm trên đường nối gôn Nhà với gôn 2 và cách gôn Nhà 18,44m. Tính các khoảng cách từ vị trí đứng ném bóng tới các gôn 1 và gôn 3.
Lời giải:
Kí hiệu gôn Nhà, gôn 1, gôn 2, gôn 3 và vị trí ném bóng lần lượt là các điểm A, B, C, D, O như hình vẽ.
Khi đó, tứ giác ABCD là hình vuông với đường chéo CA là tia phân giác của góc BCD. Hay .
Ta có: CD = 27,4 AC = CD . = 27,4 . ≈ 38,75.
OC = AC – OA ≈ 38,75 − 18,44 = 20,31.
Xét tam giác OCD, áp dụng định lí côsin ta có:
OD2 = CD2 + CO2 – 2.CD.CO. cos.
Trong đó CD = 27,4; CO = 20,31;
Khi đó: OD2 = 27,42 + 20,312 – 2.27.20,31. cos 45o
OD2 ≈ 376,255
OD ≈ 19,4 (m)
Xét ΔCOB và ΔCOD, có:
BC = CD (ABCD là hình vuông)
(CA là tia phân giác của góc BCD)
Cạnh CO chung
Do đó ΔCOB = ΔCOD (c.g.c)
Suy ra OB = OD ≈ 19,4 (m) (hai cạnh tương ứng).
Vậy khoảng cách từ vị trí đứng ném bóng tới các gôn 1 và gôn 3 khoảng 19,4 m.
Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Bài 7: Các khái niệm mở đầu
Bài 8: Tổng và hiệu của hai vectơ
Bài 9: Tích của một vecto với một số
Bài 10: Vectơ trong mặt phẳng tọa độ
Bài 11: Tích vô hướng của hai vecto
Đăng bởi: THCS Bình Chánh
Chuyên mục: Giải Toán 10 Kết nối tri thức
- Giải Bài 4.16 trang 65 Toán 10 tập 1 SGK Kết nối tri thức với cuộc sống
- Giải Bài 1 trang 37 Toán 10 tập 1 SGK Chân trời sáng tạo
- Giải Vận dụng trang 30 Toán 10 tập 1 SGK Kết nối tri thức với cuộc sống
- Triều cường là gì? Triều cường xảy ra khi nào?
- Thơ Đường luật là gì? Đặc điểm của thơ Đường luật
- Phân tích nhân vật he ra clet hay nhất (5 mẫu)