Bài 3. Gia tốc và đồ thị vận tốc – thời gian trang 28, 29, 30, 31, 32 Vật Lí 10 Cánh diều | SGK Vật Lí 10 – Cánh diều
Mời các em theo dõi nội dung bài học hôm nay Bài 3. Gia tốc và đồ thị vận tốc – thời gian trang 28, 29, 30, 31, 32 Vật Lí 10 Cánh diều | SGK Vật Lí 10 – Cánh diều
Một ô tô tăng tốc từ lúc đứng yên, sau 6,0 s đạt vận tốc 18 m/s. Tính độ lớn gia tốc của ô tô. Người lái xe ô tô hãm phanh để xe giảm tốc độ từ 23 m/s đến 11 m/s trong 20 s. Một người lái ô tô đang đi với tốc độ ổn định trên đường cao tốc, chợt nhìn thấy tín. Từ độ dốc của đồ thị vận tốc – thời gian của chuyển động thẳng. Bảng 1.2 liệt kê một số giá trị vậ tốc của người đi xe máy trong quá trình tốc độ dọc.
Bạn đang xem: Bài 3. Gia tốc và đồ thị vận tốc – thời gian trang 28, 29, 30, 31, 32 Vật Lí 10 Cánh diều | SGK Vật Lí 10 – Cánh diều
Câu hỏi tr 29
1. Quan sát, trả lời câu hỏi và thảo luận
Câu 1. Một ô tô tăng tốc từ lúc đứng yên, sau 6,0 s đạt vận tốc 18 m/s. Tính độ lớn gia tốc của ô tô. |
Hướng dẫn giải:
Biểu thức tính độ lớn của gia tốc: \(a = \frac{{\Delta v}}{{\Delta t}}\)
Trong đó:
+ \(\Delta v\): độ thay đổi vận tốc (m/s); \(\Delta v = \left| {{v_2} – {v_1}} \right|\)
+ \(\Delta t\): thời gian (s)
+ a: gia tốc (m/s2 )
Lời giải:
Gia tốc của ô tô là:
\(a = \frac{{\Delta v}}{{\Delta t}} = \frac{{18 – 0}}{6} = 3(m/{s^2})\)
Câu 2. Người lái xe ô tô hãm phanh để xe giảm tốc độ từ 23 m/s đến 11 m/s trong 20 s. Tính độ lớn của gia tốc. |
Hướng dẫn giải:
Biểu thức tính độ lớn của gia tốc: \(a = \frac{{\Delta v}}{{\Delta t}}\)
Trong đó:
+ \(\Delta v\): độ thay đổi vận tốc (m/s); \(\Delta v = \left| {{v_2} – {v_1}} \right|\)
+ \(\Delta t\): thời gian (s)
+ a: gia tốc (m/s2 )
Lời giải:
Gia tốc của ô tô là:
\(a = \frac{{\Delta v}}{{\Delta t}} = \frac{{\left| {11 – 23} \right|}}{{20}} = 0,6(m/{s^2})\)
2. Luyện tập
Trong một cuộc thi chạy, từ trạng thái đứng yên, một vận động viên chạy với gia tốc 5,0 m/s2 trong 2,0 giây đầu tiên. Tính vận tốc của vận động viên sau 2,0 s. |
Hướng dẫn giải:
Biểu thức tính độ thay đổi vận tốc:
\(\Delta v = a.\Delta t\)
Trong đó:
+ \(\Delta v\): độ thay đổi vận tốc (m/s); \(\Delta v = \left| {{v_2} – {v_1}} \right|\)
+ \(\Delta t\): thời gian (s)
+ a: gia tốc (m/s2 )
Lời giải:
Ta có:
a = 5 m/s2
\(\Delta t = 2\)s
v1 = 0 m/s
Độ thay đổi vận tốc của vận động viên là:
\(\Delta v = a.\Delta t = 5.2 = 10(m/s)\)
=> Vận tốc của vận động viên sau 2 s là: 10 – 0 = 10 m/s
Câu hỏi tr 30
1. Quan sát, trả lời câu hỏi và thảo luận
Một người lái ô tô đang đi với tốc độ ổn định trên đường cao tốc, chợt nhìn thấy tín hiệu báo có nguy hiểm ở phía trước nên dần dần giảm tốc độ. Ô tô tiến thêm một đoạn thì người này thấy một tai nạn đã xảy ra và phanh gấp để dừng lại. Vẽ phác đồ thị vận tốc – thời gian để biểu diễn chuyển động của ô tô này. |
Lời giải:
2. Quan sát, trả lời câu hỏi và thảo luận
Từ độ dốc của đồ thị vận tốc – thời gian của chuyển động thẳng trên hình 1.3, hình nào tương ứng với mỗi phát biểu sau đây? 1. Độ dốc dương, gia tốc không đổi. 2. Độ dốc lớn hơn, gia tốc lớn hơn. 3. Độ dốc bằng không, gia tốc a = 0. 4. Độ dốc âm, gia tốc âm (chuyển động chậm dần). |
Hướng dẫn giải:
Quan sát hình vẽ
Lời giải:
1 – d
2 – b
3 – a
4 – c
Câu hỏi tr 31
Bảng 1.2 liệt kê một số giá trị vận tốc của người đi xe máy trong quá trình tốc độ dọc theo một con đường thẳng.
a) Vẽ đồ thị vận tốc – thời gian cho chuyển động này. b) Từ những số đo trong bảng, hãy suy nghĩ gia tốc của người đi xe máy trong 10 s đầu tiên. c) Kiểm tra kết quả tính được của bạn bằng cách tìm độ dốc của đồ thị trong 10 s đầu tiên. d) Xác định gia tốc của người đi xe máy trong thời gian 15 s cuối cùng. e) Sử dụng đồ thị để tìm tổng quãng đường đã đi trong quá trình thử tốc độ. |
Hướng dẫn giải:
– Biểu thức tính gia tốc:
\(a = \frac{{\Delta v}}{{\Delta t}}\)
Trong đó:
+ \(\Delta v\): độ thay đổi vận tốc (m/s); \(\Delta v = \left| {{v_2} – {v_1}} \right|\)
+ \(\Delta t\): thời gian (s)
+ a: gia tốc (m/s2 )
– Độ dốc của đồ thị vận tốc – thời gian = gia tốc của chuyển động
Lời giải:
a)
b)
Trong 10 s đầu tiên, ta có:
+ \(\Delta v = 30(m/s)\)
+ \(\Delta t = 10(s)\)
=> Gia tốc của người đi xe máy trong 10 s đầu tiên là:
\(a = \frac{{\Delta v}}{{\Delta t}} = \frac{{30}}{{10}} = 3(m/{s^2})\)
c) Từ đồ thị ta có:
+ \(\Delta v = 30(m/s)\)
+ \(\Delta t = 10(s)\)
=> Độ dốc của người đi xe máy trong 10 s đầu tiên là:
\(a = \frac{{\Delta v}}{{\Delta t}} = \frac{{30}}{{10}} = 3(m/{s^2})\)
d) Trong 15 s cuối cùng, ta có:
+ \(\Delta v = 30(m/s)\)
+ \(\Delta t = 15(s)\)
=> Gia tốc của người đi xe máy trong 15 s cuối cùng là:
\(a = \frac{{\Delta v}}{{\Delta t}} = \frac{{30}}{{15}} = 2(m/{s^2})\)
e) Do vật không đổi chiều chuyển động nên độ dịch chuyển = quãng đường đi được = Diện tích đồ thị
+ Từ 0 – 10 s, quãng đường vật đi được là: \({S_1} = \frac{1}{2}.10.30 = 150(m)\)
+ Từ 10 – 15 s, quãng đường vật đi được là: \({S_2} = 30.5 = 150(m)\)
+ Từ 15 s – 20 s, quãng đường vật đi được là: \({S_3} = \frac{{(30 + 20).5}}{2} = 125(m)\)
+ Từ 20 s – 30 s, quãng đường vật đi được là: \({S_4} = \frac{{(30 + 20).10}}{2} = 250(m)\)
=> Tổng quãng đường vật đi được là: S = 150 + 150 + 125 + 250 = 675 (m).
Chú ý:
+ Diện tích hình tam giác: S = 1/2. đáy. chiều cao
+ Diện tích hình chữ nhật: S = chiều dài . chiều rộng
+ Diện tích hình thang: S = (đáy lớn + đáy bé) . chiều cao / 2
Lí thuyết
>> Xem chi tiết: Lí thuyết Bài 3 Gia tốc và đồ thị vận tốc – thời gian – Vật lí 10
Hy vọng với nội dung trong bài Bài 3. Gia tốc và đồ thị vận tốc – thời gian trang 28, 29, 30, 31, 32 Vật Lí 10 Cánh diều | SGK Vật Lí 10 – Cánh diều
do thầy cô trường Trung học Bình Chánh biên soạn sẽ giúp các em nắm chắc kiến thức nội dung bài học tốt hơn để từ đó hoàn thành tất cả các bài tập trong SGK.
Đăng bởi: THCS Bình Chánh
Chuyên mục: Vật Lí 10 Cánh Diều
- Giải Bài 4.16 trang 65 Toán 10 tập 1 SGK Kết nối tri thức với cuộc sống
- Giải Bài 1 trang 37 Toán 10 tập 1 SGK Chân trời sáng tạo
- Giải Vận dụng trang 30 Toán 10 tập 1 SGK Kết nối tri thức với cuộc sống
- Triều cường là gì? Triều cường xảy ra khi nào?
- Thơ Đường luật là gì? Đặc điểm của thơ Đường luật
- Phân tích nhân vật he ra clet hay nhất (5 mẫu)