Học TậpLớp 10Toán 10 Chân trời sáng tạo

Giải Toán 10 Bài 1 Chân trời sáng tạo: Giá trị lượng giác của một góc từ 0 độ đến 180 độ | Giải Toán lớp 10

Mời các em theo dõi nội dung bài học do thầy cô trường Trung học Bình Chánh biên soạn sẽ giúp các em nắm chắc kiến thức nội dung bài học tốt hơn.

Giải bài tập Toán 10 Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ

Giải Toán 10 trang 61 Tập 1

Bạn đang xem: Giải Toán 10 Bài 1 Chân trời sáng tạo: Giá trị lượng giác của một góc từ 0 độ đến 180 độ | Giải Toán lớp 10

Hoạt động khởi động trang 61 Toán lớp 10 Tập 1: Làm thế nào để mở rộng khái niệm tỉ số lượng giác của góc nhọn cho các góc từ 0° đến 180°?

Lời giải:

Để mở rộng khái niệm tỉ số lượng giác của góc nhọn cho các góc từ 0o đến 180o, ta thực hiện xác định các góc trên nửa đường tròn đơn vị, sau đó sử dụng tỉ số lượng giác của góc nhọn.

1. Giá trị lượng giác

Hoạt động khám phá 1 trang 61 Toán lớp 10 Tập 1: Trong mặt phẳng tọa độ Oxy, nửa đường tròn tâm O bán kính R = 1 nằm phía trên trục hoành được gọi là nửa đường tròn đơn vị. Cho trước một góc nhọn α, lấy điểm M trên nửa đường tròn đơn vị sao cho xOM^=α. Giả sử điểm M có tọa độ (x0; y0). Trong tam giác vuông OHM, áp dụng cách tính tỉ số lượng giác của một góc nhọn đã học ở lớp 9 , chứng tỏ rằng:

sinα = y0; cosα = x0 ; tanα =  y0x0; cotα = x0y0

Giải Toán 10 Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ - Chân trời sáng tạo (ảnh 1)

Lời giải:

Ta có : OM = R = 1

Áp dụng hệ thức lượng trong tam giác vuông OHM ta có:

sinα=MHMO=y01=y0

cosα=OHMO=x01=x0

tanα=sinαcosα=y0x0

cotα=cosαsinα=x0y0

Giải Toán 10 trang 62 Tập 1

Thực hành 1 trang 62 Toán lớp 10 Tập 1: Tìm các giá trị lượng giác của góc 135°.

Lời giải:

Giải Toán 10 Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ - Chân trời sáng tạo (ảnh 1)

Gọi M là điểm thuộc nửa đường tròn đơn vị sao cho xOM^=1350nên yOM^=450

Gọi N và P tương ứng là hình chiếu vuông góc của M lên các trục Ox và Oy

Xét ∆ MOP vuông cân tại P ta có :

 OP2+MP2=OM22OP2=OM2OP2=OM22=12OP=22

Tương tự, xét ∆ NOP vuông cân tại P ta có : ON = 22

Do N nằm trên khoảng -1 đến 0 nên M (22;22)

Vậy sin1350=22;cos1350=22; tan 135° = -1; cot 135° = -1.

2. Quan hệ giữa các giá trị lượng giác của hai góc bù nhau

Hoạt động khám phá 2 trang 62 Toán lớp 10 Tập 1: Trên nửa đường tròn đơn vị, cho dây cung NM song song với trục Ox (Hình 4). Tính tổng số đo của hai góc  xOM^ và xON^

Lời giải:

 Giải Toán 10 Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ - Chân trời sáng tạo (ảnh 1)

Vì NM // Ox nên xOM^=NMO^.

Xét tam giác OMN cân tại O ta có:

ONM^+NMO^+NOM^=1800 hay 2NMO^+NOM^=1800(1)

Ta có: xOM^+ xON^= xOM^+xOM^+NOM^

                                = 2.NMO^+NOM^(2)

Từ (1) và (2) ta có: xOM^+xON^=1800

Giải Toán 10 trang 63 Tập 1

Thực hành 2 trang 63 Toán lớp 10 Tập 1: Tính các giá trị lượng giác: sin120°; cos150°; cot135°.

Lời giải:

sin120° = sin(180° – 60°) = sin60° = 32;

cos150° = cos(180° – 30°) = – cos30° =  32;

cot135° = cot(180° – 45°) = – cot45° = –1.

Vận dụng 1 trang 63 Toán lớp 10 Tập 1: Cho biết sinα=12 , tìm góc α (0° ≤ α  ≤ 180°) bằng cách vẽ nửa đường tròn đơn vị.

Lời giải:

Giải Toán 10 Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ - Chân trời sáng tạo (ảnh 1)

Gọi H(0;12), K (0,1).

Gọi M là một điểm thuộc nửa đường tròn đơn vị sao cho HM//Ox.

Xét ∆MHK vuông tại H ta có: MK2=HM2+HK2

Mà OH = HK (vì OH = 12OK)

MK2=HM2+HK2=HM2+OH2=OM2

OM=HK=OKhay tam giác OMK là tam giác đều

KOM^=600MOx^=900600=300

hay α=300.

3. Giá trị lượng giác của một số góc đặc biệt

Thực hành 3 trang 63 Toán lớp 10 Tập 1: Tính

A = sin150° + tan135°  + cot45°;

B = 2cos30° – 3tan150° + cot135°.

Lời giải:

A=sin1500+tan1350+cot450

=12+(1)+1=12

B=2cos3003tan1500+cot1350

=2.323.(33)+(1)

=231

Giải Toán 10 trang 64 Tập 1

Vận dụng 2 trang 64 Toán lớp 10 Tập 1: Tìm góc α  (0° ≤ α  ≤ 180°) trong mỗi trường hợp sau:

a) sinα  = 32;

b) cosα = 22 ;

c) tanα  =  – 1;

d) cotα  =  3.

Lời giải:

Áp dụng bảng giá trị lượng giác của các góc đặc biệt, ta được:

a) sinα=32 khi α = 60o hoặc α = 120o.

b) cosα=22 khi α = 135o.

c) tan α = -1 khi α = 135o.                  

d) cot α = 3khi α = 150o.

4. Sử dụng máy tính cầm tay để tính giá trị lượng giác của một góc

Giải Toán 10 trang 65 Tập 1

Thực hành 4 trang 65 Toán lớp 10 Tập 1:

a) Tính cos80°43’51”; tan147°12’25”; cot99°9’19”.

b) Tìm α (0° ≤ α  ≤ 180°), biết cosα  = – 0,723.

Lời giải:

a) Sử dụng máy tính cầm tay, ta có:

cos80°4351 ≈ 0,161072728;

tan147°1225 ≈ -0,6442844943;

cot99°919 ≈ -0,1611637334.

b) Ta có: cosα =  0,723 suy ra α ≈ 136°19.

Bài tập

Bài 1 trang 65 Toán lớp 10 Tập 1: Cho biết sin30° = 12; sin60° = 32 ; tan45° = 1. Sử dụng mối liên hệ giữa các giá trị lượng giác của hai góc bù nhau, phụ nhau để tính giá trị của E = 2cos30° + sin150° + tan135°.

Lời giải:

E=2cos300+sin1500+tan1350

=2cos(900600)+sin(1800300)+tan(1800450)

=2sin600+sin300tan450

=2.32+121=312

Bài 2 trang 65 Toán lớp 10 Tập 1: Chứng minh rằng:

a) sin20° = sin160°;

b) cos50° =  – cos130°.

Lời giải:

a) Ta có: sin200=sin(18001600)=sin1600(đpcm)

b) Ta có: cos500=cos(18001300)=cos1300(đpcm)

Bài 3 trang 65 Toán lớp 10 Tập 1: Tìm α (0° ≤ α  ≤ 180°) trong mỗi trường hợp sau:

a) cosα  = 22 ;

b) sinα  = 0;

c) tanα  = 1;

d) cotα  không xác định.

Lời giải:

a)cosα=22 khi α = 135o

b) sin α = 0 khi α = 0o hoặc α = 180o.

c) tan α = 1 khi α = 45o.

d) cot α không xác định khi α = 0o hoặc α = 180o.

Bài 4 trang 65 Toán lớp 10 Tập 1: Cho tam giác ABC. Chứng minh rằng:

a) sinA = sin(B + C);

b) cosA =  – cos(B + C).

Lời giải:

Xét ∆ABC có: A^+B^+C^=1800(định lí tổng ba góc trong một tam giác)

nên A^=1800(B^+C^) 

a) sinA=sin(1800(B+C))=sin(B+C)(đpcm)

b)cosA=cos(1800(B+C))=cos(B+C) (đpcm)

Bài 5 trang 65 Toán lớp 10 Tập 1: Chứng minh rằng với mọi góc α (0° ≤ α  ≤ 180°), ta đều có:

a) cos2α  + sin2α  = 1;

b) tanα  . cotα  = 1 (0° < α  < 180°, α  ≠ 90°).

c) 1 + tan2α  = 1cos2α (α  ≠ 90°);

d) 1 + cot2 α  = 1sin2α (0° < α  < 180°).

Lời giải:

Giải Toán 10 Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ - Chân trời sáng tạo (ảnh 1)

Gọi M là điểm thuộc nửa đường tròn đơn vị sao cho xOM^=α(00α1800). Khi đó, ta có:

sinα=y0;cosα=x0,tanα=y0x0;cotα=x0y0

a) cos2α+sin2α=x02+y02=OM2=1. Vậy cos2α+sin2α=1.

b) Với 00<α<1800; α ≠ 900:

tanα. cotα = y0x0.x0y0=1

Vậy tanα. cotα =1 (00<α<1800; α ≠ 900).

c) 1+tan2α=1+sin2αcos2α=cos2α+sin2αcos2α=1cos2α(α900).

Vậy 1+tan2α=1cos2α(α900).       

d)  1+cot2α=1+cos2αsin2α=sin2α+cos2αsin2α=1sin2α(00<α<1800).

Vậy 1+cot2α=1sin2α(00<α<1800).

Bài 6 trang 65 Toán lớp 10 Tập 1: Cho góc α với cosα  = 22 . Tính giá trị của biểu thức A = 2sin2α  + 5cos2α .

Lời giải:

A=2sin2α+5cos2α

=2sin2α+2cos2α+3cos2α

=2(sin2α+cos2α)+3cos2α

=2+3cos2α(vì cos2α+sin2α=1)

=2+3222

=2+32=72

Bài 7 trang 65 Toán lớp 10 Tập 1: Dùng máy tính cầm tay, hãy thực hiện các yêu cầu dưới đây:

a) Tính: sin168°45’33”; cos17°22’35”; tan156°26’39”; cot 56°36’42”.

b) Tìm α (0° ≤ α  ≤ 180°) trong các trường hợp sau:

i) sinα  = 0,862;

ii) cosα  =  – 0,567;

iii) tanα  = 0,334.

Lời giải:

a)

 sin168°4533 ≈ 0,1949334051

cos17°2235 ≈ 0,9543634797

tan156°2639 ≈ -0,4359715781

cot56°3642≈ 0,6590863967

b) Với 00α1800

i) sinα = 0,862 suy ra α59°3231            

ii) cosα = -0,567 suy ra α124°3229

iii) tanα = 0,334 suy ra α18°2810

Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 2: Định lí côsin và định lí sin

Bài 3: Giải tam giác và ứng dụng thực tế

Bài tập cuối chương 4

Bài 1: Khái niệm vectơ

Bài 2: Tổng và hiệu của hai vectơ

Xem thêm tài liệu Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Lý thuyết Bài 1: Giá trị lượng giác của một góc từ 0° đến 180°

Đăng bởi: THCS Bình Chánh

Chuyên mục: Toán 10 Chân trời sáng tạo

5/5 - (2 bình chọn)


Trường THCS Bình Chánh

Trường THCS Bình Chánh với mục tiêu chung là tạo ra một môi trường học tập tích cực, nơi mà học sinh có thể phát triển khả năng và đạt được thành công trong quá trình học tập. Chúng tôi cam kết xây dựng một không gian học tập đầy thách thức, sáng tạo và linh hoạt, nơi mà học sinh được khuyến khích khám phá, rèn luyện kỹ năng và trở thành những người học suốt đời.

Bài viết liên quan

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button