Toán 10 Bài 4 Cánh diều: Nhị thức Newton| Giải Toán lớp 10
Mời các em theo dõi nội dung bài học do thầy cô trường Trung học Bình Chánh biên soạn sẽ giúp các em nắm chắc kiến thức nội dung bài học tốt hơn.
Giải bài tập Toán 10 Bài 4: Nhị thức Newton
A. Các câu hỏi trong bài
Bạn đang xem: Toán 10 Bài 4 Cánh diều: Nhị thức Newton| Giải Toán lớp 10
Giải Toán 10 trang 18 Tập 2
Câu hỏi khởi động trang 18 Toán 10 Tập 2: Làm thế nào để khai triển các biểu thức (a + b)4, (a + b)5 một cách nhanh chóng?
Lời giải
Sau bài học này, ta sẽ biết khai triển các biểu thức (a + b)4, (a + b)5 một cách nhanh chóng bằng cách áp dụng công thức nhị thức Newton (a + b)n với n = 4; n = 5.
Khi đó ta có:
(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4;
(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5.
Hoạt động trang 18 Toán 10 Tập 2:
Ta đã biết (a + b)3 = a3 + 3a2b + 3ab2 + b3 = 1 . a3 + 3 . a2 . b1 + 3 . a1 . b2 + 1 . b3.
a) Tính .
b) Chọn số thích hợp cho trong khai triển sau:
(a + b)3 = .
Lời giải
a) Ta tính được
(có thể sử dụng máy tính cầm tay).
b) Do (a + b)3 = a3 + 3a2b + 3ab2 + b3 = 1 . a3 + 3 . a2 . b1 + 3 . a1 . b2 + 1 . b3
Mà theo câu a) ta có: .
Vậy ta điền được:
(a + b)3 = .
Giải Toán 10 trang 19 Tập 2
Luyện tập 1 trang 19 Toán 10 Tập 2: Khai triển biểu thức (2 + x)4.
Lời giải
Ta có:
(2 + x)4
= 24 + 4 . 23 . x + 6 . 22 . x2 + 4 . 2 . x3 + x4
= 16 + 32x + 24x2 + 8x3 + x4.
Luyện tập 2 trang 19 Toán 10 Tập 2: Khai triển biểu thức (2 − 3y)4.
Lời giải
Ta có: (2 – 3y)4
= [2 + (– 3y)]4
= 24 + 4 . 23 . (– 3y) + 6 . 22 . (– 3y)2 + 4 . 2 . (– 3y)3 + (– 3y)4
= 16 – 96y + 216y2 – 216y3 + 81y4.
Luyện tập 3 trang 19 Toán 10 Tập 2: Tính:
a) ;
b) .
Lời giải
Ta có:
a)
= (1 + 1)4
= 24
= 16.
b)
=
= [1 + (– 1)]5
= 05
= 0.
B. Bài tập
Bài 1 trang 19 Toán 10 Tập 2: Khai triển các biểu thức sau:
a) (2x + 1)4;
b) (3y – 4)4;
c) ;
d) .
Lời giải
a) (2x + 1)4
= (2x)4 + 4 . (2x)3 . 1 + 6 . (2x)2 . 12 + 4 . (2x) . 13 + 14
= 16x4 + 32x3 + 24x2 + 8x + 1.
b) (3y – 4)4
= [3y + (– 4)]4
= (3y)4 + 4 . (3y)3 . (– 4) + 6 . (3y)2 . (– 4)2 + 4 . (3y) . (– 4)3 + (– 4)4
= 81y4 – 432y3 + 864y2 – 768y + 256.
c)
.
d)
.
Bài 2 trang 19 Toán 10 Tập 2: Khai triển các biểu thức sau:
a) (x + 1)5;
b) (x – 3y)5.
Lời giải
a) (x + 1)5
= x5 + 5 . x4 . 1 + 10 . x3 . 12 + 10 . x2 . 13 + 5 . x . 14 + 15
= x5 + 5x4 + 10x3 + 10x2 + 5x + 1.
b) (x – 3y)5
= [x + (– 3y)]5
= x5 + 5 . x4 . (– 3y) + 10 . x3 . (– 3y)2 + 10 . x2 . (– 3y)3 + 5 . x . (– 3y)4 + (– 3y)5
= x5 – 15x4y + 90x3y2 – 270x2y3 + 405xy4 – 243y5.
Bài 3 trang 19 Toán 10 Tập 2: Xác định hệ số của x4 trong khai triển biểu thức (3x + 2)5.
Lời giải
Số hạng chứa x4 trong khai triển biểu thức (3x + 2)5 là .
Mà = 5 . 81x4 . 2 = (5 . 2 . 81)x4 = 810x4.
Vậy hệ số của x4 trong khai triển biểu thức (3x + 2)5 là 810.
Bài 4 trang 19 Toán 10 Tập 2: Cho
. Tính:
a) a3;
b) a0 + a1 + a2 + a3 + a4 + a5.
Lời giải
Áp dụng công thức nhị thức Newton ta có:
.
a) Ta có a3 là hệ số của x3 trong khai triển biểu thức .
Vậy .
b) Theo phân tích nhị thức Newton ở trên, ta suy ra:
.
Khi đó: a0 + a1 + a2 + a3 + a4 + a5 = .
Vậy a0 + a1 + a2 + a3 + a4 + a5 .
Bài 5 trang 19 Toán 10 Tập 2: Cho tập hợp A có 5 phần tử. Số tập hợp con của A là bao nhiêu?
Lời giải
Mỗi cách trích ra một tập con gồm n phần tử trong 5 phần tử (0 ≤ n ≤ 5) của A chính là một tổ hợp chập n của 5, do đó số tập con gồm n phần tử của A là .
Số tập hợp con có 0 phần tử của A là .
Số tập hợp con có 1 phần tử của A là .
Số tập hợp con có 2 phần tử của A là .
Số tập hợp con có 3 phần tử của A là .
Số tập hợp con có 4 phần tử của A là .
Số tập hợp con có 5 phần tử của A là .
Do đó, số tập hợp con của A là:
= (1 + 1)5 = 25 = 32.
Vậy tập hợp A có 32 tập hợp con.
Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Bài tập cuối chương 5
Bài 1: Số gần đúng. Sai số
Bài 2: Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm
Bài 3: Các số liệu đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm
Bài 4: Xác suất của biến cố trong một số trò chơi đơn giản
Đăng bởi: THCS Bình Chánh
Chuyên mục: Toán 10 Cánh Diều
- Giải Bài 4.16 trang 65 Toán 10 tập 1 SGK Kết nối tri thức với cuộc sống
- Giải Bài 1 trang 37 Toán 10 tập 1 SGK Chân trời sáng tạo
- Giải Vận dụng trang 30 Toán 10 tập 1 SGK Kết nối tri thức với cuộc sống
- Triều cường là gì? Triều cường xảy ra khi nào?
- Thơ Đường luật là gì? Đặc điểm của thơ Đường luật
- Phân tích nhân vật he ra clet hay nhất (5 mẫu)