Giải Toán 7 Kết nối tri thức: Bài tập cuối chương 7
Mời các em theo dõi nội dung bài học do thầy cô trường Trung học Bình Chánh biên soạn sẽ giúp các em nắm chắc kiến thức nội dung bài học tốt hơn.
Giải bài tập Toán 7 : Bài tập cuối chương 7
Giải Toán 7 trang 46 Tập 2
Bạn đang xem: Giải Toán 7 Kết nối tri thức: Bài tập cuối chương 7
Bài 7.42 trang 46 Toán 7 Tập 2:
Một hãng taxi quy định giá cước như sau: 0,5 km đầu tiên giá 8 000 đồng; tiếp theo cứ mỗi kilômét giá 11 000 đồng. Giả sử một người thuê xe đi x (kilômét).
a) Chứng tỏ rằng biểu thức biểu thị số tiền mà người đó phải trả là một đa thức. Tìm bậc, hệ số cao nhất và hệ số tự do của đa thức đó.
b) Giá trị của đa thức tại x = 9 nói lên điều gì?
Lời giải:
a) Với số kilômét đã đi là x (km) thì 0,5 (km) đầu tiên tính giá 8 000 đồng và x – 0,5 (km) tiếp theo tính giá 11 000 đồng.
Số tiền người đó cần trả với số kilômét giá 11 000 đồng là 11 000 . (x – 0,5) (đồng).
Biểu thức biểu thị số tiền người đó cần trả là:
8 000 + 11 000 . (x – 0,5) = 8000 + 11 000x + 11 000 . (-0,5)
= 8 000 + 11 000x – 5 500
= 11 000 x + 2 500.
Do đó biểu thức biểu thị số tiền người đó cần trả là một đa thức.
Đa thức trên có hạng tử bậc cao nhất là 11 000x nên bậc của đa thức trên bằng 1.
Hệ số có bậc bằng 0 là 2 500 nên hệ số tự do bằng 2 500.
b) Giá trị của đa thức tại x = 9 nói lên giá tiền người đó phải trả khi đi 9 km.
Bài 7.43 trang 46 Toán 7 Tập 2:
Cho đa thức bậc hai F(x) = ax2 + bx + c, trong đó a, b và c là những số với a ≠ 0.
a) Cho biết a + b + c = 0. Giải thích tại sao x = 1 là một nghiệm của F(x).
b) Áp dụng, hãy tìm một nghiệm của đa thức bậc hai 2x2 – 5x + 3.
Lời giải:
a) Thay x = 1 vào đa thức F(x) ta được:
F(1) = a . 12 + b . 1 + c = a + b + c = 0.
Do đó x = 1 là một nghiệm của F(x).
b) Ta thấy đa thức bậc hai 2x2 – 5x + 3 có dạng ax2 + bx + c với a = 2, b = -5 và c = 3.
Khi đó, a + b + c = 2 + (-5) + 3 = 0.
Do đó theo câu a, x = 1 là nghiệm của đa thức bậc hai 2x2 – 5x + 3.
Vậy x = 1 là một nghiệm của đa thức bậc hai 2x2 – 5x + 3.
Bài 7.44 trang 46 Toán 7 Tập 2:
Cho đa thức A = x4 + x3 – 2x – 2.
a) Tìm đa thức B sao cho A + B = x3 + 3x + 1.
b) Tìm đa thức C sao cho A – C = x5.
c) Tìm đa thức D, biết rằng D = (2x2 – 3) . A.
d) Tìm đa thức P sao cho A = (x + 1) . P.
e) Có hay không một đa thức Q sao cho A = (x2 + 1) . Q?
Lời giải:
a) Ta có A + B = x3 + 3x + 1
Suy ra:
B = x3 + 3x + 1 – A
= x3 + 3x + 1 – (x4 + x3 – 2x – 2)
= x3 + 3x + 1 – x4 – x3 + 2x + 2
= – x4 + (x3 – x3) + (3x + 2x) + (1 + 2)
= – x4 + 5x + 3
Vậy B = -x4 + 5x + 3.
b) Ta có A – C = x5
Suy ra:
C = A – x5
= x4 + x3 – 2x – 2 – x5
= – x5 + x4 + x3 – 2x – 2
Vậy C = – x5 + x4 + x3 – 2x – 2.
c) Ta có D = (2x2 – 3) . A
D = (2x2 – 3) . (x4 + x3 – 2x – 2)
= 2x2 . (x4 + x3 – 2x – 2) + (-3) . (x4 + x3 – 2x – 2)
= [2x2 . x4 + 2x2 . x3 + 2x2 . (-2x) + 2x2 . (-2)]
+ [(-3) . x4 + (-3) . x3 + (-3) . (-2x) + (-3) . (-2)]
= 2x6 + 2x5 – 4x3 – 4x2 – 3x4 – 3x3 + 6x + 6
= 2x6 + 2x5 – 3x4 + (-4x3 – 3x3) – 4x2 + 6x + 6
= 2x6 + 2x5 – 3x4 – 7x3 – 4x2 + 6x + 6
Vậy D = 2x6 + 2x5 – 3x4 – 7x3 – 4x2 + 6x + 6.
d) Ta có A = (x + 1) . P
Suy ra P = A : (x + 1)
P = (x4 + x3 – 2x – 2) : (x + 1)
Đặt tính chia ta được:
Vậy P = x3 – 2.
e) Thực hiện đặt tính chia đa thức A cho đa thức x2 + 1 ta được:
Ta thấy đa thức A chia cho đa thức x2 + 1 dư -3x – 1 nên không tồn tại đa thức Q sao cho
A = (x2 + 1) . Q.
Bài 7.45 trang 46 Toán 7 Tập 2:
Cho đa thức P(x). Giải thích tại sao nếu có đa thức Q(x) sao cho P(x) = (x – 3) . Q(x) (tức P(x) chia hết cho x – 3) thì x = 3 là một nghiệm của P(x).
Lời giải:
Tại x = 3 ta có:
P(3) = (3 – 3) . Q(3) = 0 . Q(3) = 0.
Do đó x = 3 là một nghiệm của P(x).
Bài 7.46 trang 46 Toán 7 Tập 2:
Hai bạn Tròn và Vuông tranh luận với nhau như sau:
Vuông: “Đa thức M(x) = x3 + 1 có thể viết được thành tổng của hai đa thức bậc hai”.
Tròn: “Không thể như thế được. Nhưng M(x) có thể viết được thành tổng của hai đa thức bậc bốn”.
Hãy cho biết ý kiến của em và nêu một ví dụ minh họa.
Lời giải:
Tổng của hai đa thức bậc hai sẽ là đa thức có bậc cao nhất là 2.
Do đó ý kiến của bạn Vuông sai và ý kiến của bạn Tròn đúng.
Ví dụ minh họa cho tổng hai đa thức bậc bốn A và B bằng x3 + 1:
A = x4 + x3 + x + 1
B = – x4 – x
Khi đó:
A + B = (x4 + x3 + x + 1) + (- x4 – x)
= x4 + x3 + x + 1 – x4 – x
= (x4 – x4) + x3 + (x – x) + 1
= x3 + 1.
Xem thêm các bài giải sách giáo khoa Toán 7 bộ sách Kết nối tri thức hay, chi tiết khác:
Bài 29: Làm quen với biến cố
Bài 30: Làm quen với xác suất của biến cố
Luyện tập chung trang 57
Bài tập cuối chương 8
Bài 31: Quan hệ giữa góc và cạnh đối diện trong một tam giác
Đăng bởi: THCS Bình Chánh
Chuyên mục: Giải Toán 7 Kết nối tri thức
- Giải Bài 9.29 trang 81 Toán 7 tập 2 SGK Kết nối tri thức với cuộc sống
- Giải Bài 9.30 trang 81 Toán 7 tập 2 SGK Kết nối tri thức với cuộc sống
- Giải Bài 6.33 trang 21 Toán 7 tập 2 SGK Kết nối tri thức với cuộc sống
- Giải Bài 6.27 trang 20 Toán 7 tập 2 SGK Kết nối tri thức với cuộc sống
- Giải Bài 6.28 trang 20 Toán 7 tập 2 SGK Kết nối tri thức với cuộc sống
- Giải Bài 6.29 trang 20 Toán 7 tập 2 SGK Kết nối tri thức với cuộc sống