Học TậpLớp 7Toán 7 Kết nối tri thức

Toán 7 Kết nối tri thức: Luyện tập chung trang 86

Mời các em theo dõi nội dung bài học do thầy cô trường Trung học Bình Chánh biên soạn sẽ giúp các em nắm chắc kiến thức nội dung bài học tốt hơn.

Giải bài tập Toán 7 Luyện tập chung trang 86 

Bạn đang xem: Toán 7 Kết nối tri thức: Luyện tập chung trang 86

Giải Toán 7 trang 86 Tập 1

Bài 4.29 trang 86 Toán 7 Tập 1: Cho Hình 4.73. Hãy tìm số đo x, y của các góc và độ dài a, b của các đoạn thẳng trên hình vẽ.

Tài liệu THCS Bình Chánh

Lời giải:

GT

ΔABC,ΔABD, AC = 4 cm, BD = 3,3 cm;

BAC^=45°,ABD^=60°,ACB^=75°,ADB^=75°. 

KL

Tìm x, y và tính a, b.

Tài liệu THCS Bình Chánh

+) Xét tam giác ABD có ABD^=60°,ADB^=75°, theo định lí tổng ba góc trong một tam giác ta có BAD^+ABD^+ADB^=180°.

Suy ra BAD^=180°ABD^ADB^

Hay x = 180° – 60° – 75°

 x = 45°.

Xét tam giác ABC có BAC^=45°,ACB^=75°, theo định lí tổng ba góc trong một tam giác ta có BAC^+ABC^+ACB^=180°.

Suy ra ABC^=180°BAC^ACB^

Hay y = 180° – 45° – 75°

 y = 60°.

+) Xét tam giác ABC và tam giác ABD có:

BAC^=BAD^ (cùng có số đo bằng 45°);

AB là cạnh chung;

ABC^=ABD^ (cùng có số đo bằng 60°).

Vậy ΔABC=ΔABD (g.c.g).

Suy ra BC = BD (hai cạnh tương ứng) và AC = AD (hai cạnh tương ứng).

Mà BD = 3,3 cm và AC = 4 cm.

Do đó a = BC = 3,3 cm và b = AD = 4 cm.

Vậy  x = 45°,  y = 60°, a = 3,3 cm và b = 4 cm.  

Bài 4.30 trang 86 Toán 7 Tập 1: Cho góc xOy. Trên tia Ox lấy hai điểm A, M; trên tia Oy lấy hai điểm B, N sao cho OA = OB, OM = ON, OA > OM. Chứng minh rằng:

a) ΔOAN=ΔOBM;

b) ΔAMN=ΔBNM.

Lời giải:

GT

xOy^,A,MOx;B,NOy;

OA = OB, OM = ON, OA > OM.

KL

a) ΔOAN=ΔOBM; 

b) ΔAMN=ΔBNM.

Tài liệu THCS Bình Chánh

a) Xét tam giác OAN và tam giác OBM có:

OA = OB (theo giả thiết);

AOB^ là góc chung;

ON = OM (theo giả thiết).

Vậy ΔOAN=ΔOBM (c.g.c).

b) Do B, N cùng nằm trên tia Oy, OA = OB, OM = ON và OA > OM (theo giả thiết) nên OB > ON, khi đó OB = ON + NB suy ra NB = OB – ON.

Do A, M cùng nằm trên tia Ox, OA > OM (theo giả thiết) nên OA = OM + MA suy ra MA = OA – OM.

Lại có OA = OB, OM = ON (theo giả thiết) nên OA – OM = OB – ON.

Hay MA = NB.

Từ ΔOAN=ΔOBM (chứng minh ở câu a) suy ra AN = BM (hai cạnh tương ứng).

Xét tam giác AMN và tam giác BNM có:

AN = BM (chứng minh trên);

MN là cạnh chung;

MA = NB (chứng minh trên).

Vậy ΔAMN=ΔBNM(c.g.c).

Bài 4.31 trang 86 Toán 7 Tập 1: Cho Hình 4.74, biết OA = OB, OC = OD. Chứng minh rằng:

a) AC = BD;

b) ΔACD=ΔBDC.

Tài liệu THCS Bình Chánh

Lời giải:

GT

OA = OB, OC = OD.

KL

a) AC = BD;

b) ΔACD=ΔBDC.

Tài liệu THCS Bình Chánh

a) Xét tam giác OAC và tam giác OBD có:

OA = OB (theo giả thiết);

AOC^=BOD^ (hai góc đối đỉnh);

OC = OD (theo giả thiết).

Vậy ΔOAC=ΔOBD (c.g.c).

Suy ra AC = BD (hai cạnh tương ứng).

b) Ta có AD = AO + OD và BC = BO + OC.

Mà OA = OB, OC = OD (theo giả thiết) nên AO + OD = BO + OC hay AD = BC.

Xét tam giác ACD và tam giác BDC có:

AC = BD (chứng minh ở câu a);

AD = BC (chứng minh trên);

CD là cạnh chung.

Vậy ΔACD=ΔBDC (c.c.c). 

Bài 4.32 trang 86 Toán 7 Tập 1: Cho tam giác MBC vuông tại M có B^=60°. Gọi A là điểm nằm trên tia đối của tia MB sao cho MA = MB. Chứng minh rằng tam giác ABC là tam giác đều.

Lời giải:

GT

ΔMBC vuông tại M, B^=60°, MA = MB.

KL

Tam giác ABC là tam giác đều.

Tài liệu THCS Bình Chánh

Xét tam giác MBC (vuông tại M) và tam giác MAC (vuông tại M) có:

MB = MA (theo giả thiết);

MC là cạnh chung.

Vậy ΔMBC=ΔMAC (hai cạnh góc vuông).

Suy ra B^=A^ (hai góc tương ứng)

B^=60° nên B^=A^=60°.

Tam giác ABC có B^=A^=60°, theo định lí tổng ba góc trong một tam giác ta có A^+B^+C^=180°

Suy ra C^=180°A^B^ hay C^=180°60°60°=60°. 

Do đó A^=B^=C^=60° suy ra tam giác ABC đều.

Vậy tam giác ABC đều. 

Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Bài tập cuối chương 4 trang 87

Bài 17: Thu thập và phân loại dữ liệu

Bài 18: Biểu đồ hình quạt tròn

Bài 19: Biểu đồ đoạn thẳng

Luyện tập chung

Đăng bởi: THCS Bình Chánh

Chuyên mục: Giải Toán 7 Kết nối tri thức

Rate this post


Trường THCS Bình Chánh

Trường THCS Bình Chánh với mục tiêu chung là tạo ra một môi trường học tập tích cực, nơi mà học sinh có thể phát triển khả năng và đạt được thành công trong quá trình học tập. Chúng tôi cam kết xây dựng một không gian học tập đầy thách thức, sáng tạo và linh hoạt, nơi mà học sinh được khuyến khích khám phá, rèn luyện kỹ năng và trở thành những người học suốt đời.

Bài viết liên quan

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button