Thầy cô trường THCS Bình Chánh xin giới thiệu đến các em bài học hôm nay với nội dung: Bài 8 trang 180 SGK Đại số và giải tích 11: ÔN TẬP CUỐI NĂM – ĐẠI SỐ VÀ GIẢI TÍCH 11…
Bài 8 trang 180 SGK Đại số và giải tích 11: ÔN TẬP CUỐI NĂM – ĐẠI SỐ VÀ GIẢI TÍCH 11. Tìm cấp số cộng tăng, biết rằng tổng ba số hạng đầu của nó bằng 27 và tổng các bình phương của chúng bằng 275.
(Quảng cáo)
Bài 8. Tìm cấp số cộng tăng, biết rằng tổng ba số hạng đầu của nó bằng \(27\) và tổng các bình phương của chúng bằng \(275\).
Bạn đang xem: Bài 8 trang 180 SGK Đại số và giải tích 11: ÔN TẬP CUỐI NĂM – ĐẠI SỐ VÀ GIẢI TÍCH 11…
Xét cấp số cộng \(u_1, u_2, u_3…\) có công sai \(d > 0\)
Theo giả thiết ta có:
\(\eqalign{
& \left\{ \matrix{
{u_1} + {u_2} + {u_3} = 27 \hfill \cr
{u_1}^2 + {u_2}^2 + {u_3}^2 = 275 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
{u_1} + ({u_1} + d) + ({u_1} + 2d) = 27 \hfill \cr
{u_1}^2 + {({u_1} + d)^2} + {({u_1} + 2d)^2} = 275 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
3{u_1} + 3d = 27 \hfill \cr
3{u_1}^2 + 6{u_1}d + 5{d^2} = 275 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
{u_1} = 9 – d(1) \hfill \cr
3{u_1}^2 + 6{u_1}d + 5{d^2} = 275(2) \hfill \cr} \right. \cr} \)
Thay \(u_1\) ở (1) vào (2) ta được:
\(3(9 – d)^2+ 6d(9 – d) + 5d^2= 275\)
\(⇔ d^2– 16 = 0 ⇔ d = ± 4\)
Vì \(d > 0\) nên ta chỉ chọn \(d = 4, u_1= 5\)
Vậy cấp số cộng phải tìm là \(5, 9, 13, 17, …\)
Hy vọng nội dung bài học Bài 8 trang 180 SGK Đại số và giải tích 11: ÔN TẬP CUỐI NĂM – ĐẠI SỐ VÀ GIẢI TÍCH 11… sẽ là tài liệu hữu ích giúp các em hoàn thành tốt bài tập của mình.
Đăng bởi: Trường THCS Bình Chánh
Chuyên mục: Tài Liệu Học Tập