Học TậpLớp 6Toán 6 Cánh Diều

Toán 6 Bài 10 Cánh diều: Số nguyên tố. Hợp số | Giải SGK Toán lớp 6 Cánh diều

Mời các em theo dõi nội dung bài học do thầy cô trường Trung học Bình Chánh biên soạn sẽ giúp các em nắm chắc kiến thức nội dung bài học tốt hơn.

Giải Toán 6 Bài 10: Số nguyên tố. Hợp số

Trả lời câu hỏi giữa bài

Bạn đang xem: Toán 6 Bài 10 Cánh diều: Số nguyên tố. Hợp số | Giải SGK Toán lớp 6 Cánh diều

Giải Toán 6 trang 41 Tập 1

Toán lớp 6 trang 41 Câu hỏi khởi động: Bác Vĩnh mua 17 cuốn sổ và 34 chiếc bút để làm quà tặng. Bác Vĩnh muốn chia đều 17 cuốn sổ thành các gói và cũng muốn chia đều 34 chiếc bút thành các gói.

Bác Vĩnh mua 17 cuốn sổ và 34 chiếc bút để làm quà tặng. Bác Vĩnh muốn chia (ảnh 1)

Bác Vĩnh có bao nhiêu cách chia những cuốn sổ thành các gói? Có bao nhiêu cách chia những chiếc bút thành các gói?

Lời giải:

+) Để tìm số cách chia những cuốn sổ thành các gói đều nhau, ta tìm các ước của 17 bằng cách lần lượt thực hiện phép chia 17 cho các số tự nhiên từ 1 đến 17, các phép chia hết là:

17 : 1 = 17 và 17 : 17 = 1

Vậy có 2 cách chia những cuốn sách thành các gói đều nhau:

– Cách 1: Để 1 gói gồm 17 cuốn

– Cách 2: Chia làm 17 gói, mỗi gói 1 cuốn sổ.

+) Để tìm số cách chia những chiếc bút bi thành các gói đều nhau, ta tìm ước của 34 bằng cách thực hiện phép chia 34 cho các số tự nhiên từ 1 đến 34, các phép chia hết là:

34 : 1 = 34; 34 : 2 = 17; 34 : 17 = 2; 34 : 34 = 1

Vậy có 4 cách chia những chiếc bút thành các gói đều nhau:

Cách 1: Chia thành 1 gói 34 chiếc.

Cách 2: Chia thành 2 gói, mỗi gói 17 chiếc.

Cách 3: Chia thành 17 gói, mỗi gói 2 chiếc.

Cách 4: Chia thành 34 gói, mỗi gói 1 chiếc.

Toán lớp 6 trang 41 Hoạt động 1:

a) Tìm các ước của mỗi số sau: 2, 3, 4, 5, 6, 7, 17, 34.

b) Trong các số trên, những số nào có hai ước, những số nào có nhiều hơn hai ước?

Lời giải:

a) Các ước của 2 là: 1; 2

Các ước của 3 là: 1; 3

Các ước của 4 là: 1; 2; 4

Các ước của 5 là: 1; 5

Các ước của 6 là: 1; 2; 3; 6

Các ước của 7 là: 1; 7

Các ước của 17 là: 1; 17

Các ước của 34 là: 1; 2; 17; 34.

b)

Các số 2, 3, 5, 7, 17 chỉ có hai ước là 1 và chính nó. Các số đó được gọi là số nguyên tố.

Các số 4, 6, 34 có nhiều hơn hai ước. Các số đó được gọi là hợp số.

Toán lớp 6 trang 41 Luyện tập 1: Cho các số 11, 29, 35, 38. Trong các số đó:

a) Số nào là số nguyên tố? Vì sao?

b) Số nào là hợp số? Vì sao?

Lời giải:

a) + Số 11 là số nguyên tố vì nó lớn hơn 1, chỉ có hai ước là 1 và 11.

+ Số 29 là số nguyên tổ vì nó lớn hơn 1, chỉ có hai ước là 1 và 29.

b) + Ta có số 35 có chữ số tận cùng là 5 nên nó chia hết cho 5

Do đó số 35 là hợp số vì ngoài hai ước là 1 và 35, nó còn có ít nhất một ước nữa là 5.

+ Ta có số 38 có chữ số tận cùng là 8 nên nó chia hết cho 2

Do đó số 38 là hợp số vì ngoài hai ước là 1 và 38, nó còn có ít nhất một ước nữa là 2.

Giải Toán 6 trang 42 Tập 1

Toán lớp 6 trang 42 Luyện tập 2: Tìm các ước nguyên tố của: 23, 24, 26, 27.

Lời giải:

Để tìm các ước nguyên tố của một số thì ta tìm các ước của số đó trước, rồi xét xem trong các ước đó, ước nào là số nguyên tố thì số đó được gọi là ước nguyên tố của số đã cho.

+ Để tìm các ước của số 23 ta lấy 23 lần lượt chia cho các số tự nhiên từ 1 đến 23. Các phép chia hết là: 23 : 1 = 23; 23 : 23 = 1.

Do đó các ước của số 23 là: 1; 23, trong hai ước này ta thấy số 23 là số nguyên tố (vì nó lớn hơn 1 và chỉ có hai ước là 1 và chính nó)

Vậy ước nguyên tố của số 23 là 23.

(Cách giải khác: Vì 23 là số nguyên tố nên ước nguyên tố của 23 là 23.)

+ Để tìm các ước của số 24 ta lấy 24 lần lượt chia cho các số tự nhiên từ 1 đến 24. Các phép chia hết là:

24 : 1 = 24; 24 : 2 = 12;

24 : 3 = 8; 24 : 4 = 6;

24: 6 = 4; 24 : 8 = 3;

24 : 12 = 2; 24 : 24 = 1

Do đó các ước của số 24 là: 1; 2; 3; 4; 6; 8; 12; 24, trong đó có 2 và 3 là số nguyên tố (vì các số đó lớn hơn 1 và chỉ có 2 ước là 1 và chính nó)

Vậy các ước nguyên tố của số 24 là: 2 và 3.

+ Để tìm các ước của số 26 ta lấy 26 lần lượt chia cho các số tự nhiên từ 1 đến 26. Các phép chia hết là:

26 : 1 = 26; 26 : 2 = 13;

26 : 13 = 2; 26 : 26 = 1

Do đó các ước của số 26 là: 1; 2; 13; 26, trong đó có số 2 và 13 là số nguyên tố (vì các số đó lớn hơn 1 và chỉ có 2 ước là 1 và chính nó)

Vậy các ước nguyên tố của 26 là: 2 và 13.

+ Để tìm các ước của số 27 ta lấy 27 lần lượt chia cho các số tự nhiên từ 1 đến 27. Các phép chia hết là:

27 : 1 = 27; 27 : 3 = 9;

27 : 9 = 3; 27 : 27 = 1

Do đó các ước của số 27 là: 1; 3; 9; 27, trong đó chỉ có số 3 là số nguyên tố (vì nó lớn hơn 1 và chỉ có 2 ước là 1 và chính nó)

Vậy ước nguyên tố của 27 là: 3.

Toán lớp 6 trang 42 Luyện tập 3: Viết hai số chỉ có ước nguyên tố là 3.

Lời giải:

Theo bài Luyện tập 2 (Trang 42/SGK), số chỉ có ước nguyên tố là 3 là 27.

Ta cũng có thể tìm được các số khác thỏa mãn yêu cầu bài toán, ví dụ như các số: 3; 9; 81; 243;…

Nhận xét: Các số tự nhiên có dạng 3n với n là số tự nhiên khác 0 đều là các số thỏa mãn yêu cầu bài toán.

Bài tập

Toán lớp 6 trang 42 Bài 1: Cho các số 36, 37, 69, 75. Trong các số đó:

a) Số nào là số nguyên tố? Vì sao?

b) Số nào là hợp số? Vì sao?

Lời giải:

a) Số 37 là số nguyên tố vì nó lớn hơn 1, chỉ có hai ước là 1 và 37.

b) Ta có

+ Số 36 có chữ số tận cùng là 6 nên nó chia hết cho 2.

Do đó số 36 là hợp số vì ngoài hai ước là 1 và 36, nó còn có ít nhất một ước nữa là 2.

+ Số 69 có tổng các chữ số là 6 + 9 = 15 chia hết cho 3 nên số 69 chia hết cho 3.

Do đó số 69 là hợp số vì ngoài hai ước là 1 và 69 thì nó còn có ít nhất một ước nữa là 3.

+ Số 75 có chữ số tận cùng là 5 nên nó chia hết cho 5.

Do đó 75 là hợp số vì ngoài hai ước là 1 và 75, nó còn có ít nhất một ước nữa là 5.

Toán lớp 6 trang 42 Bài 2: Hãy chỉ ra một số nguyên tố lớn hơn 40 và nhỏ hơn 50.

Lời giải:

Các số tự nhiên lớn hơn 40 và nhỏ hơn 50 là: 41; 42; 43; 44; 45; 46; 47; 48; 49.

Trong các số trên, ta thấy có số 41, 43 và 47 là các số nguyên tố vì nó các số lớn hơn 1 và chỉ có 2 ước là 1 và chính nó.

Do đó đề bài yêu cầu các em chỉ ra một số nguyên tố lớn hơn 40 và nhỏ hơn 50 thì các em chọn 1 trong ba câu trả lời sau:

+ Một số nguyên tố lớn hơn 40 và nhỏ hơn 50 là: 41 (vì 41 lớn hơn 1 và chỉ có hai ước là 1 và 41).

+ Một số nguyên tố lớn hơn 40 và nhỏ hơn 50 là: 43 (vì 43 lớn hơn 1 và chỉ có hai ước là 1 và 43).

+ Một số nguyên tố lớn hơn 40 và nhỏ hơn 50 là: 47 (vì 47 lớn hơn 1 và chỉ có hai ước là 1 và 47).

Toán lớp 6 trang 42 Bài 3: Mỗi phát biểu sau đúng hay sai? Vì sao?

a) Một số tự nhiên không là số nguyên tố thì sẽ là hợp số.

b) Mọi số nguyên tố đều là số lẻ.

c) 3 là ước nguyên tố của 6 nên 3 cũng là ước nguyên tố của 18.

d) Mọi số tự nhiên đều có ước nguyên tố.

Lời giải:

a) Phát biểu: “Một số tự nhiên không là số nguyên tố thì sẽ là hợp số” là phát biểu sai vì số tự nhiên 0 và số tự nhiên 1 không là số nguyên tố và cũng không là hợp số. (Theo Lưu ý Trang 41/SGK).

b)  Phát biểu : “Mọi số nguyên tố đều là số lẻ.” là sai vì số 2 là số nguyên tố chẵn. (Do 2 chỉ có 2 ước là 1 và chính nó).

c) Phát biểu: “3 là ước nguyên tố của 6 nên 3 cũng là ước nguyên tố của 18” là đúng vì cả 18 và 6 đều chia hết cho số nguyên tố 3, hơn nữa 18 = 6 . 3 nên 3 là ước nguyên tố của 6 và cũng là ước nguyên tố của 18.

d) Phát biểu: “Mọi số tự nhiên đều có ước nguyên tố” là sai vì số 1 chỉ có ước tự nhiên là 1 và nó không phải là số nguyên tố.

Toán lớp 6 trang 42 Bài 4: Tìm các ước nguyên tố của: 36, 49, 70.

Lời giải:

Để tìm các ước nguyên tố của một số thì ta tìm các ước của số đó trước, rồi xét xem trong các ước đó, ước nào là số nguyên tố thì số đó được gọi là ước nguyên tố của số đã cho.

+ Để tìm các ước của số 36, ta lấy 36 lần lượt chia cho các số tự nhiên từ 1 đến 36. Các phép chia hết là:

36 : 1 = 36; 36 : 2 = 18;

36 : 3 = 12; 36 : 4 = 9;

36 : 6 = 6; 36 : 9 = 4;

36 : 12 = 3; 36 : 18 = 2;

36 : 36 = 1

Do đó các ước của số 36 là: 1; 2; 3; 4; 6; 9; 12; 18; 36, trong đó có số 2; 3 là các số nguyên tố.

Vậy các ước nguyên tố của 36 là: 2; 3.

+ Để tìm các ước của số 49, ta lấy 49 lần lượt chia cho các số tự nhiên từ 1 đến 49. Các phép chia hết là:

49 : 1= 49; 49 : 7 = 7; 49 : 49 = 1

Do đó các ước của số 49 là: 1; 7; 49, trong đó có số 7 là số nguyên tố.

Vậy ước nguyên tố của 49 là: 7.

+ Để tìm các ước của số 70, ta lấy 70 lần lượt chia cho các số tự nhiên từ 1 đến 70.

Ta tìm được các ước của 70 là: 1; 2; 5; 7; 10; 14; 35; 70, trong đó có các số 2; 5; 7 là các số nguyên tố.

Vậy các ước nguyên tố của 70 là: 2; 5; 7.

Toán lớp 6 trang 42 Bài 5: Hãy viết ba số:

a) Chỉ có ước nguyên tố là 2.

b) Chỉ có ước nguyên tố là 5

Lời giải:

a) Các số chỉ có ước nguyên tố là 2 là các bội của 2 và không nhận ước nguyên tố nào khác ngoài 2.

Do đó ta có 3 số chỉ có ước nguyên tố là 2 là: 2; 4; 8.

(Ta có thể chứng minh được các số thỏa mãn yêu cầu bài toán có dạng 2n, do đó các em có thể đưa ra bộ ba số tùy ý khác thỏa mãn yêu cầu).

b) Các số chỉ có ước nguyên tố là 5 là các bội của 5 và không nhận ước nguyên tố nào khác ngoài 5.

Do đó ta có 3 số chỉ có ước nguyên tố là 5 là: 5; 25; 125.

(Ta có thể chứng minh được các số thỏa mãn yêu cầu bài toán có dạng 5n, do đó các em có thể đưa ra bộ ba số tùy ý khác thỏa mãn yêu cầu).

Giải Toán 6 trang 43 Tập 1

Toán lớp 6 trang 43 Bài 6: Bạn An nói với bạn Bình: “Đầu tiên tôi có 11 là số nguyên tố. Cộng 2 vào 11 tôi được 13 là số nguyên tố. Cộng 4 vào 13 tôi được 17 cũng là số nguyên tố. Tiếp theo, cộng 6 vào 17 tôi được 23 cũng là số nguyên tố. Cứ thực hiện như thế, mọi số nhận được đều là số nguyên tố”. Hỏi cách tìm số nguyên tố của bạn An có đúng không?

Lời giải:

Cách tìm số nguyên tố của bạn An là không đúng vì ta thực hiện tiếp như sau:

+ Cộng 8 vào 23 ta được 31 là số nguyên tố

+ Cộng 10 vào 31 ta được 41 là số nguyên tố

+ Cộng 12 vào 41 ta được 53 là số nguyên tố

+ Cộng 14 vào 53 ta được 67 là số nguyên tố

+ Cộng 16 vào 67 ta được 83 là số nguyên tố

+ Cộng 18 vào 83 ta được 101 là số nguyên tố

+ Cộng 20 vào 101 ta được 121 KHÔNG phải là số nguyên tố vì 121 chia hết cho 11, do đó ngoài 2 ước là 1 và 121 thì số 121 còn có ước khác là 11 nên nó là hợp số.

Vậy cứ tiếp tục thực hiện theo cách của bạn An thì mọi số nhận được không phải tất cả đều là số nguyên tố, nên cách tìm này là sai.

Có thể em chưa biết

Toán lớp 6 trang 43 Có thể em chưa biết – Bài 1: Sàng Ơ-ra-tô-xten (Eratosthenes)

Để tìm số nguyên tố nhỏ hơn 50, ta làm như sau:

+) Viết tất cả các số tự nhiên từ 2 đến 50.

+) Khoanh tròn số 2, gạch tất cả các số là bội của 2 mà lớn hơn 2:

Sàng Ơ-ra-tô-xten (Eratosthenes). Để tìm số nguyên tố nhỏ hơn 50, ta làm như sau (ảnh 1)

+) Khoanh tròn số 3, gạch tất cả các số là bội của 3 mà lớn hơn 3

+) Khoanh tròn số 5, gạch tất cả các số là bội của 5 mà lớn hơn 5.

+) Khoanh tròn số 7, gạch tất cả các số là bội của 7 mà lớn hơn 7.

+) Các số không bị gạch trong bảng đều là số nguyên tố.

Các số nguyên tố nhỏ hơn 50 là: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47.

Số nguyên tố nhỏ nhất là số 2 và đó là số nguyên tố chẵn duy nhất.

Bằng cách tương tự như thế, ta có thể lọc ra tất cả các số nguyên tố nhỏ hơn một số tự nhiên n cho trước. Cách làm đó được gọi là sàng Ơ-ra-tô-xten

Em hãy sử dụng sàng Ơ-ra-tô-xten để tìm tất cả các số nguyên tố nhỏ hơn 100.

Lời giải:

Ta tiếp tục thực hiện với các số từ 51 đến 100 bằng cách:

Viết các số từ 51 đến 100, gạch các số là bội của 2, 3, 5, 7

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

Ta tìm thêm được các số nguyên tố từ 51 đến 100 là: 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Vậy bằng sàng Ơ-ra-tô-xten ta tìm được các số nguyên tố nhỏ hơn 100 là: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Xem thêm lời giải bài tập Toán lớp 6 sách Cánh diều hay, chi tiết khác:

Bài 10: Số nguyên tố. Hợp số

Bài 11: Phân tích một số ra thừa số nguyên tố

Bài 12: Ước chung và ước chung lớn nhất

Bài 13: Bội chung và bội chung nhỏ nhất

Bài tập cuối chương 1

Đăng bởi: THCS Bình Chánh

Chuyên mục: Toán 6 Cánh Diều

5/5 - (9 bình chọn)


Trường THCS Bình Chánh

Trường THCS Bình Chánh với mục tiêu chung là tạo ra một môi trường học tập tích cực, nơi mà học sinh có thể phát triển khả năng và đạt được thành công trong quá trình học tập. Chúng tôi cam kết xây dựng một không gian học tập đầy thách thức, sáng tạo và linh hoạt, nơi mà học sinh được khuyến khích khám phá, rèn luyện kỹ năng và trở thành những người học suốt đời.

Bài viết liên quan

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button